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Abstract—Loudspeaker array beamforming is a common sig-
nal processing technique for acoustic directivity control and
robust audio reproduction. Unlike their microphone counterpart,
loudspeaker constraints are often heterogeneous due to arrayed
transducers with varying operating ranges in frequency, acoustic-
electrical sensitivity, efficiency, and directivity. This work pro-
poses a frequency-regularization method for generalized Rayleigh
quotient directivity specifications and two novel beamformer
designs that optimize for maximum efficiency constant directivity
(MECD) and maximum sensitivity constant directivity (MSCD).
We derive fast converging and analytic solutions from their
quadratic equality constrained quadratic program formulations.
Experiments optimize generalized directivity index constrained
beamformer designs for a full-band heterogeneous array.

Index Terms—Beamforming, acoustic directivity, regulariza-
tion, quadratic programming, secular equation

I. INTRODUCTION

Beamformer designs for loudspeaker arrays require con-
straints atypical to their microphone array counterpart due
to greater variations in operating frequency characteristics
across loudspeaker transducer elements, acoustic and electric
power output limits, and placement restrictions. Traditional
frequency-invariant beamforming designs for linear [1], cir-
cular [2], spherical [3], differential [4], [5] homogeneous
arrays often optimize for directivity factor and white-noise
gain (WNG) [6], [7], and beam pattern fit [8]. Such constraints
are less applicable for heterogeneous loudspeakers and non-
uniform arrays that jointly maximize acoustic/electrical power
ratio in a listening window, and satisfy a generalized directivity
index (GDI) [9]. The former extends WNG to evaluation
regions in spherical coordinates, and transducer dependent
penalty factors per electrical power unit over frequency. The
latter relaxes beam pattern targets to an acoustic power ratio
over two evaluation regions defined by density functions. This
work addresses both issues and is organized as follows:

Section II introduces a novel regularization technique for
the generalized Rayleigh quotient (GRQ) [10] that penalizing
both acoustic and electrical power for heterogeneous arrays
without introducing explicit constraints in their formulations.
Sections II-A, II-B propose two maximal acoustic efficiency
and sensitivity beamformer designs subject to constant GDI
equality constraints, and present a pair of iterative and analytic
solutions respectively via quadratic programming. Section
III solves for the secular equation sub-problem common to
both beamformer formulations. Section IV shows several
beamformer designs for a sample heterogeneous array and
compares convergence rates of the iterative solutions. Section
V summarizes the theoretical results and experiments.

II. LOUDSPEAKER DIRECTIVITY OPTIMIZATION

The GRQ wHAw
wHRw

is the power ratio of a beamformer’s
responses over two domains specified by weights w and so-
called ”accept” and ”reject” covariance matrices A, and R
respectively. A beamformer’s GDI equates to the GRQ for
covariance matrices specified in the acoustic domain given by

A = Er∼fA

[
d(r)dH(r)

]
, R = Er∼fR

[
d(r)dH(r)

]
, (1)

where the expectation samples steering vectors or anechoic
frequency responses d(r) (conjugate transpose dH(r)) over
the Cartesian unit-directions r. The probability density func-
tions fA(r), fR(r) weight the acoustic power-responses over
specifiable directions to boost and attenuate respectively as
shown in Fig. 1, and generalize the directivity index [9].
Maximizing GRQ therefore maximizes GDI by reducing GRQ

Fig. 1. Sample accept fA(r) and reject fR(r) density functions define
forward-facing listening and side-facing reflection windows respectively.

into the normal Rayleigh quotient under a change of variables:

G(A,R,w) =
wHAw

wHRw
=

xHQx

xHx
, x = LHw,

Q = L−1AL−H , R = LLH ,

(2)

where matrix L is the lower-triangular Cholesky factor of R.
The maximizer w∗ = argmaxw G(A,R,w) = L−Hv of (2)
constrained to the unit-circle wHRw = 1 is therefore the
eigenvector v of the largest eigenvalue of matrix Q.

In heterogeneous transducer beamformer design, it is ben-
eficial to mix both acoustic and electric rejection covariance
matrices as to penalize components of w outside each trans-
ducer’s operating frequency ranges. Consider the following
generalized Rayleigh penalty quotient (GRPQ) G(A,R +
ΓΣ,w) which adds a diagonal positive-definite penalty matrix
ΓΣ to the denominator covariance matrix R given by

Γ = diag [diag [R]] , Σ = diag [σ1, . . . , σN ] , (3)

where 0 ≤ σn ≤ ∞ is unbounded. Inverting the sum of Σ
and the identity matrix I gives the bounded weighting matrix

Λ = (Σ+ I)
− 1

2 = diag [λ1, . . . , λN ] , 0 ≤ λn ≤ 1, (4)



which penalizes |wn| for smaller λn. Lowering λn → 0 for
frequencies outside transducer n’s operating range has the
desired effect on the maximizer |wn∗| → 0 and thus general-
izes crossover designs to joint frequency-transducer weighted
specifications of Λ as shown in Fig. 2. For computation, Λ

Fig. 2. Max GRQ upper-bounds max GRPQ for a real sample mid-range,
full-range and tweeter array. The maximizer w∗ attenuates for frequencies
outside each transducer’s operating range curve specified by Λ.

also improves the condition number of ΓΣ for maximizing
(2) when combined with the following change of variables:

wHAw

wH (R+ ΓΣ)w
=

yHΛAΛy

yHΛ
(
R+ Γ(Λ−2 − I)

)
Λy

, (5)

where y = Λ−1w. The modified GRPQ in (5) is now well-
conditioned and bounded above by GRQ as expressed by

G(ΛAΛ, R̂,y) = G(A,R,w)G(ΛRΛ, R̂,y),

R̂ = ΛRΛ+ Γ(I −Λ2) = Γ+Λ (R− Γ)Λ,
(6)

where R̂ attenuates non-diagonal entries of R by Λ2.

A. Maximum Efficiency Constant Directivity Beamformer

In speaker array beamforming design, we can consider the
following constant GRQ optimization argmaxw G(C, I,w)
s.t. G(A,R,w) = τ , which maximizes an array’s efficiency
defined by the ratio of the acoustic output power for covariance
matrix C, to electric output power s.t. constant GDI τ . The
constraint is feasible for τ between the smallest and largest
generalized eigenvalues of A, R, and the solutions are not
generally unique; consider diagonalizing matrix Q in (2):

τ =
xHQx

xHx
=

zHEz

zHz
, Q = V EV H , z = V Hx, (7)

where V = [v1 . . .vN ] is the column matrix of eigenvectors
and e = diag [E] = [e1, . . . , eN ] s.t. en ≤ en+1 the ascending
real-valued eigenvalues. For zHz = 1 constrained to the unit-
circle, τ =

∑N
n=1 |zn|

2
en is satisfied by multiple non-negative

weighting of e except at the extrema τ = {e1, eN}. For the
open interval e1 < τ < eN , we express GRQs (2), (7) as the
quadratic equality constraint wHDw = 0 via substitution for
the Hermitian matrix D, which is shown to be indefinite:

D = A− τR = LV (E − τI)V HLH , (8)

where wn = L−Hvn ⇒ wH
n Dwn = en − τ .

We now formally define the maximum efficiency constant
directivity MECD(A,R, τ,C,w) beamformer design as a

quadratic equality constrained quadratic program given by

argmax
w

wHCw s.t. wHDw = 0, wHw = 1, (9)

where Hermitian matrix C is the speaker covariances over
a separate evaluation density fC(r) as in (1), and indefinite
matrix D constrains the GDI to τ . The necessary conditions
for optimality are expressed via the Lagrangian function L:

L(w, λ, µ) = wHCw − λ(wHDw)− µ(wHw − 1),

∂ L/∂w =
(
CT − λDT − µI

)
w∗,

0 = (∂ L/∂w)
∗
= (C − λ∗D − µ∗I)w,

0 = ∂ L/∂w∗ = (C − λD − µI)w,

⇒ ℜ [λ]Dw = (C −ℜ [µ] I)w,

(10)

where µ and λ are the Lagrangian multipliers and it suffices
to restrict both µ, λ ∈ R for Hermitian C,A,R. Substituting
Dw in (10) into the constraints yields the critical points of µ:

0 = ∂ L/∂ λ = wHDw = wH (C − µI)w,

⇒ µ =
wHCw

wHw
= G(C, I,w),

(11)

which are bounded between smallest and largest eigenvalues
of C. The stationary points of L(w, λ, µ) can be found via
iterative methods such the differential multipliers (DM) [11],
which at each iteration k sets µk = G(C, I,wk), performs
a round of gradient ascent and descent on wk, λk via (10),
(11) with fixed step-sizes αw, αλ respectively, and lastly
normalizes wk to the unit-circle.

We can greatly improve the convergence rate of the gradient
method by directly solving for λk via projecting wk along an
unknown direction v∗ onto the nearest feasible point satisfying
the quadratic equality constraints given by

argmin
v

vHv s.t. (wk + v)
H
D (wk + v) = 0, (12)

before normalizing the projection wk + v∗ to the unit-circle.
This is expressed in the proposed MECD projected ascent

Algorithm 1: MECD Projected Ascent
Require: Hermitian C, D = A− τR,

minG(A,R,w) ≤ τ ≤ maxG(A,R,w),
α > 0 step-size, K iterations, initial w0

Result: Solution and maximum to (9)
1 for k = 1 to K do
2 w∗ = wk−1 + αCwk−1, Gradient ascent
3 v∗ = Proj(w∗,D), Projection (12)
4 wk = w∗+v∗

∥w∗+v∗∥ , Normalization
5 end for
6 return wK

(PA) Algorithm (1), which iterates between moving w along
the gradient Cw of the objective in (9), solving for the
minimum norm projection vector v∗ for (12), and normalizing
the projection to (wk + v∗)

H
(wk + v∗) = 1. The minimum

norm projection to (12) is a variant of the quadratic con-
strained least-squares problem in [12] that we generalize for
indefinite D. Its feasible surface is the intersection of two



hyper-ellipsoids characterized by A and τR with necessary
conditions satisfying the Lagrangian L and multiplier λ:

L(v, λ) = vHv − λ (wk + v)
H
D (wk + v) ,

∂ L/∂ v = v∗ − λDT (w∗
k + v∗) ,

0 = (∂ L/∂ v)
∗
= v − λ∗D (wk + v) ,

0 = ∂ L/∂ v∗ = v − λD (wk + v) ,

⇒ v = ℜ [λ] (I −ℜ [λ]D)
−1

Dwk,

(13)

where it suffices to restrict λ ∈ R. It is useful to express Her-
mitian D = V EV H along the column matrix of eigenvectors
V and diagonal matrix of real-valued eigenvalues E so that
λ deflates the latter:

v = λV (I − λE)
−1

EV Hwk,

wk + v =
(
I + λV (I − λE)

−1
EV H

)
wk

= V (I − λE)
−1

V Hwk,

(14)

where I = V V H = V (I − λE)
−1

(I − λE)V H . Substi-
tuting v into the constraints yields the critical points λ which
are the roots of a quadratic secular equation S(λ) variant [13]:

0 = S(λ) = ∂ L/∂ λ = (wk + v)
H
D (wk + v)

= uH (I − λE)
−H

E (I − λE)
−1

u,
(15)

where u = V Hwk and the inner terms are diagonal matrices.
S(λ) is therefore a sum of rational quadratic functions.

We can further characterize the minimizer (v∗, λ∗) via a
slight modification of the first two theorems in the quadratic
constrained least-squares solution [12] to support indefinite D
for the squared norm (see Appendix derivations). Given a pair
of critical points and solutions (v1, λ1) and (v2, λ2) satisfying
(14), (15), the difference of the squared norms between vectors
v1,v2 relates to the difference in multipliers λ1 − λ2:

λ1 − λ2

2
(v1 − v2)

H
D (v1 − v2) = vH

1 v1 − vH
2 v2, (16)

and the squared norm of the vector difference v1 − v2 relates
to the sum of multipliers λ1 + λ2:

λ1 + λ2

2
(v1 − v2)

H
D (v1 − v2) = (v1 − v2)

H
(v1 − v2) .

(17)

Unlike [12], the term (v1 − v2)
H
D (v1 − v2) may be nega-

tive for indefinite D such that choosing the min {λ1, λ2} via
(16) is insufficient for determining the smaller norm between
v1,v2. Conversely, (17) no longer ensures that there is at most
one solution λ < 0. Taking the product of the left and right-
hand sides of (16), (17) however gives

λ2
1 − λ2

2

4
=

(
vH
1 v1 − vH

2 v2

)
(v1 − v2)

H
(v1 − v2)(

(v1 − v2)
H
D (v1 − v2)

)2 , (18)

which implies that picking the min
{
λ2
1, λ

2
2

}
gives the smaller

norm between v1,v2. Therefore, the multiplier λ∗ nearest to 0
and its corresponding vector v∗ after substitution into (14) is
the minimum norm solution under projection to (12). Methods

for finding λ∗ are discussed in Section III.
We note that a semi-definite program (SDP) and its relax-

ation of MECD in (9) is also possible as the number constraints
tightly bounds the rank of the solution [14]–[16]. Formally, the
MECD-SDP for unknown Hermitian and semi-definite matrix
W ⪰ 0 and the matrix trace operator tr [∗] is given by

argmax
W

tr [CW ] s.t. tr [DW ] = 0, tr [W ] = 1, (19)

which for Hermitian matrices C, D ensures a real-valued
trace of two constraints, and a rank-1 solution W = wwH .
The interior-point method (IPM) therefore finds the maximizer
within polynomial time as the problem is convex.

B. Maximum Sensitivity Constant Directivity Beamformer

If the evaluation region is conventional1, then MECD max-
imizes the loudspeaker sensitivity [17] which we show has an
analytic secular equation solution. Constraining the acoustic
response to also be distortionless at the measurement point
r reduces MECD into the proposed maximum sensitivity
constant directivity MSCD(A,R, τ, c,w) quadratic program
with both quadratic and linear constraint beamformer:

argmin
w

wHw s.t. wHDw = 0, cHw = 1, (20)

whereby c = d(r) and the acoustic output at r is constrained
to unity cHw = 1 and therefore has unit acoustic power
wHCw = 1 for C = d(r)d(r)H . This problem is a variant
of [13], [18] where the latter’s quadratic equality is set to unity
instead of zero. The MSCD extrema are found at the critical
points of the Lagrangian function L and multipliers µ and λ:

L(w, λ, µ) = wHw − λ(wHDw)

− µ(cHw − 1)− µ∗(cTw∗ − 1),

∂ L/∂w =
(
I − λDT

)
w∗ − µc∗,

0 = (∂ L/∂w)
∗
= (I − λ∗D)w − µ∗c,

0 = ∂ L/∂w∗ = (I − λD)w − µ∗c,

⇒ w = µ∗ (I −ℜ [λ]D)
−1

c,

(21)

where it suffices to restrict λ ∈ R for Hermitian A,R.
Substituting w into the constraints yields the critical points:

0 = ∂ L/∂ µ = cHw − 1 ⇒ µ∗ =
(
cH (I − λD)

−1
c
)−1

,

⇒ w =
(I − λD)

−1
c

cH (I − λD)
−1

c
,

0 = ∂ L/∂ λ = wHDw = cH (I − λD)
−H

D (I − λD)
−1

c,

(22)

which restricts µ ∈ R as the eigenvalues of I − λD are also
real. The critical points λ are the real-valued roots of S(λ) =
∂ L/∂ λ in (22), analogous to that of (15) and given by

S(λ) = wHDw = uH(I − λE)−HE(I − λE)−1u,

D = V EV H , I − λD = V (I − λE)V H ,
(23)

where u = V Hc, column eigenvector matrix V and diagonal
matrix of real-valued eigenvalues E of D. The minimizer w∗
is therefore found at the root λ∗ nearest to 0.

1Speaker’s acoustic response is measured at single point r at 1m distance



III. QUADRATIC SECULAR EQUATION ROOT-FINDING

The secular equations S(λ) in (15), (23) can be expressed
in rational form w.r.t. reciprocal eigenvalue poles bn = e−1

n :

S(λ) =

N∑
n=1

unu
∗
nen

(1− λen)
2 =

N∑
n=1

anbn

(λ− bn)
2 , (24)

where un and en are the nth elements of u and diag [E] from
(15), (23) respectively, and an = |un|2. It is also useful to
express S(λ) = S-(λ)+S+(λ) and its first derivative in terms
of the set of negative and positive poles B- = {bn| bn < 0}
and B+ = {bn| bn > 0} respectively given by

S-(λ) =
∑

bn∈B-

anbn

(λ− bn)
2 ,

∂ S-(λ)

∂ λ
=

∑
bn∈B-

2an |bn|
(λ− bn)

3 ,

S+(λ) =
∑

bn∈B+

anbn

(λ− bn)
2 ,

∂ S+(λ)

∂ λ
=

∑
bn∈B+

−2anbn

(λ− bn)
3 .

(25)

Unlike the linear and quadratic secular equations in [13], S(λ)
is not monotonic in most intervals between consecutive poles
due to the presence of different signed bn in the numerator
terms. The one exception is the tightest interval bounding 0
which contains the smallest magnitude negative and positive
poles b- = max (B-), b+ = min (B+) respectively. This is a
consequence of (25) where the first derivatives given by

∂ S-(λ > b-)

∂ λ
> 0,

∂ S+(λ < b+)

∂ λ
> 0, (26)

in the intervals outside these poles are bounded and positive.
Moreover, we show as in Fig. 3 that the intersecting interval

Fig. 3. S(λ) has positive pole B+ = {1}, negative poles B- = {−2,−1},
and two roots. The monotonic increasing S(b- < λ < b+) bounds the root
λ∗ nearest to 0 and restricts other roots to outside λ∗ reflected across b-, b+.

b- < λ < b+ contains exactly one real-valued root λ∗ that is
also the root nearest to 0 and therefore equivalent to the critical
point and solutions to (12), (20). The proof is as follows:

The function S(b- < λ < b+) where S(λ = b-) = −∞,
S(λ = b+) = +∞ is continuous and so the intermediate value
theorem guarantees the existence of at least one real-valued
root in the interval. Its first derivative ∂ S(b-<λ<b+)

∂ λ > 0 is
strictly positive in the interval via (26) and therefore contains
exactly one root λ∗ that can easily be found via bracketing
methods such as [19]. To show that λ∗ is indeed the nearest to
0, observe that reflecting λ over b- or b+ in the interval moves
λ closer to the remaining poles in B−, B+ respectively:

|λ− bn| > |2b- − λ− bn| , bn ∈ B- \ {b-} , λ > b-,

|λ− bn| > |2b+ − λ− bn| , bn ∈ B+ \ {b+} , λ < b+,
(27)

which with (26) places bounds on S-(λ), S+(λ) given by

S-(λ) > S- (2b- − λ) , S-(λ) < S- (2b+ − λ) , λ > b-,

S+(λ) < S+ (2b+ − λ) , S+(λ) > S+ (2b- − λ) , λ < b+,
(28)

and as a result induces bounds on S(λ) after summation:

S(2b- − λ) < S(λ) < S(2b+ − λ), b- < λ < b+,

⇒ S(2b- − λ) < S(λ) < 0, b- < λ < λ∗,

⇒ 0 < S(λ) < S(2b+ − λ), λ∗ < λ < b+.

(29)

This implies there are no roots in the regions reflected across
b- and b+ given by 2b- − λ∗ < λ < b- and b+ < λ < 2b+ − λ∗
respectively and that λ∗ must be nearest to 0.

IV. EXPERIMENTS

We first compare MECD solver performance for N = 8 ele-
ments with randomized complex-valued covariances A,R,C
in Fig. 4. Our PA method reduces the number of iterations to
convergence of the baseline DM method from 50 to 5. Larger
step-sizes in the latter cause oscillations between the objective
and constraint, and also exhibit to a lesser degree in Matlab’s
fmincon IPM solver. SDPT3 [20] for SDP shows similar
convergence rates of the objective to PA but requires more
compute in solving for N2 number of variables instead of N .

Fig. 4. MECD solver convergence rates for efficiency G(C, I,w) objective
and constant GDI G(A,R,w) = 6 dB constraint are ranked PA (α =
1,w0 = 1) > SDP > IPM > DM (αw = 1e− 2, αλ = 1e− 3 step-sizes).

We then compare GRQ to GRPQ beamformer designs for
a measured sample N = 3 mid-range, full-range, and tweeter
array with A,R,C = A integrated over densities from Fig.
1, frequency weighting Λ from Fig. 2, and constant GDI
min {6, 10 log10 max(τ)} dB for MECD and MSCD. GRPQ
beam patterns shown in Fig. 5 exhibit more regular responses
inline with expected transducer operating frequency ranges; di-
rectivity grows increasingly omni-directional in low-frequency
as only the mid-range is active. MECD beam patterns exhibit
less lobing than MSCD and their maximum GDI counterparts.

V. CONCLUSION

We introduced an electrical power penalty term to GRQ for
regularizing frequency-dependent heterogeneous speaker array
beamformer designs such as MECD and MSCD. Character-
izing the projection sub-problem in MECD-PA and MSCD
yielded a fast quadratic secular equation root-finding solution.
The PA method accelerated convergence rates over the baseline
DM, IPM, and SDP methods. GRPQ solutions exhibited more
regular beam patterns than GRQ for a sample 3-way system.
Inequality constrained GDI can be considered in future works.



Fig. 5. Contour plots compare GRQ to GRPQ beam patterns constrained to
each transducer’s operating ranges across frequency on the horizontal plane.

APPENDIX

The necessary conditions for (v, λ) in (12) are given by

(w + v)
H
D (w + v) = 0, v = λD (w + v) , (30)

where several useful relations are derived for characterizing
the minimizer. Expanding the equality constraint in (30) relates
the sum of symmetric terms to the sum of mixed terms:

wHDw + vHDv = −
(
vHDw +wHDv

)
. (31)

It is possible to relate the squared norm of v from (30) to the
difference in squared norms under D via (31):

vHv =
λ

2

(
vHDw +wHDv

)
+ λvHDv

=
λ

2

(
vHDv −wHDw

)
.

(32)

For (v1, λ1), (v2, λ2), the mixed products from (30) are given:

vH
2 v1 = λ1v

H
2 Dw + λ1v

H
2 Dv1,

vH
1 v2 = λ2v

H
1 Dw + λ2v

H
1 Dv2,

(33)

where their arithmetic mean is equivalent under conjugation
vH
2 v1 = 1

2

(
vH
2 v1 +

(
vH
1 v2

)H)
and vH

1 v2 =
(
vH
2 v1

)H
:

vH
2 v1 =

λ1v
H
2 Dw + λ2w

HDv1

2
+

λ1 + λ2

2
vH
2 Dv1,

vH
1 v2 =

λ1w
HDv2 + λ2v

H
1 Dw

2
+

λ1 + λ2

2
vH
1 Dv2.

(34)

Summing (34) and substituting (31) gives

vH
2 v1 + vH

1 v2 =
λ1 + λ2

2

(
vH
2 Dv1 + vH

1 Dv2 −wHDw
)

− λ1v
H
2 Dv2 + λ2v

H
1 Dv1

2
. (35)

Subtracting (35) from the sum of (v1, λ1), (v2, λ2) substi-
tuted into (32) gives vH

1 v1 + vH
2 v2 − vH

2 v1 − vH
1 v2 =

(v1 − v2)
H
(v1 − v2) which verifies (17). Next, observe that

the arithmetic difference is equivalent under conjugation:

0 = vH
2 v1 −

(
vH
1 v2

)H
= vH

1 v2 −
(
vH
2 v1

)H
,

⇒ 0 =
λ1v

H
2 Dw − λ2w

HDv1

2
+

λ1 − λ2

2
vH
2 Dv1,

⇒ 0 =
λ1w

HDv2 − λ2v
H
1 Dw

2
+

λ1 − λ2

2
vH
1 Dv2,

(36)

whereby taking the summation and substituting (31) gives

0 =
λ1 − λ2

2

(
vH
2 Dv1 + vH

1 Dv2 −wHDw
)

+
λ2v1Dv1 − λ1v2Dv2

2
.

(37)

Subtracting (37) from the difference vH
1 v1 − vH

2 v2 after
substitution into (32) verifies (16) after combining the terms.
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