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Abstract

The Canny edge detector is a very popular and effective

edge feature detector that is used as a pre-processing step

in many computer vision algorithms. It is a multi-step de-

tector which performs smoothing and filtering, non-maxima

suppression, followed by a connected-component analysis

stage to detect “true” edges, while suppressing “false” non

edge filter responses. While there have been previous (par-

tial) implementations of the Canny and other edge detectors

on GPUs, they have been focussed on the old style GPGPU

computing with programming using graphical application

layers. Using the more programmer friendly CUDA frame-

work, we are able to implement the entire Canny algorithm.

Details are presented along with a comparison with CPU

implementations. We also integrate our detector in to MAT-

LAB, a popular interactive simulation package often used

by researchers. The source code will be made available as

open source.

1. Introduction

A recent hardware trend, with origin in the gaming and

graphics industries, is the development of highly capable

data-parallel processors. These “graphics” processors were

originally meant to rapidly create two-dimensional images

from 3D models and textures. They are architected to

quickly perform all the operations in the graphics pipeline.

In 2007, while the fastest Intel CPU could only achieve ~20

Gflops, GPUs had speeds that are more than an order of

magnitude higher. Of course, the GPU performs highly spe-

cialized tasks, while the CPU is a general purpose proces-

sor. Fig. 1 shows the relative abilities of GPUs and CPUs

(on separate benchmarks) till 2007. The trends reported are

expected to continue for the next few years.

While GPUs were originally intended for specialized

graphics operations, researchers in other domains, includ-

ing computer vision, wanted to use their capabilities to

solve their problems faster. This has been a vigorous area

Figure 1. GPU and CPU growth in speed over the last 6 years (from

[1]).

of research over the last five years. In the first few years the

approach was to “fool” the GPU in to thinking that it was

performing graphics. In this approach, termed general pur-

pose GPU computing or GPGPU, the image processing and

computer vision algorithms were mapped in to a graphical

framework (calling OpenGL or DirectX functions). Unfor-

tunately, the need to translate regular programs in to graph-

ics metaphors has meant that only a small group of dedi-

cated researchers with graphics knowledge used the power

of the GPUs for non-graphical computing. The computer

vision library OpenVidia [7] is an application of this type,

as is GpuCV [12].

1.1. Coprocessor Programming Frameworks

Since early 2007, GPU manufacturers have begun to

market them as compute coprocessors, and this is the way

we consider them. The manufacturers have opened up the

functionality of these coprocessors using common program-

ming languages, and users no longer need to have knowl-

edge of graphics concepts. This is especially useful when

programming items that are not directly related to items

that are in the graphics pipeline. While AMD/ATI has

also recently released a new class of GPUs and a program-
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ming methodology, the Firestream [10]; and the Sony-IBM-

Toshiba cell processor [11] has also been used for general

purpose programming for the last couple of years, we are

more familiar with the version released by NVIDIA. It con-

sists of a programming model (Compute Unified Device Ar-

chitecture or CUDA) and a compiler that supports theC lan-

guage with GPU specific extensions for local, shared and

global memory, texture memory, and multithreaded pro-

gramming. The ability to program in a more “native” fash-

ion means that more complex algorithms and data structures

can be more easily implemented in this framework.

The NVIDIA G80 GPU, the one on which we developed

our software, is the 2007-2008 generation of the NVIDIA

GPU, and has also been released as the Tesla compute co-

processor. It consists of a set of multiprocessors (16 on our

GeForce 8800GTX), each composed of 8 processors. All

multiprocessors talk to a global device memory, which in

the case of our GPU is 768 MB, but can be as large as 1.5

GB for more recently released GPUs/coprocessors. The 8

processors in each multiprocessor share 16 kB local read-

write “shared” memory, a local set of 8192 registers, and

a constant memory of 64 kB over all multiprocessors, of

which 8 kB can be cached locally at one multiprocessor.

The CUDA model is supposed to be extended over the

next few generations of processors, making investment of

effort on programming it worthwhile, an important consid-

eration for researchers who have spent significant time on

short-lived parallel architectures in the past. Under CUDA

the GPU is a compute device that is a highly multithreaded

coprocessor. A thread block is a batch of threads that exe-

cutes on a multiprocessor that have access to its local mem-

ory. They perform their computations and become idle

when they reach a synchronization point, waiting for other

threads in the block to reach that point. Each thread is iden-

tified by its thread ID (one, two or three indices). The choice

of 1,2 or 3D index layout is used to map the different pieces

of data to the thread. The programmer writes data paral-

lel code, which executes the same instructions on different

data, though some customization of each thread is possible

based on different behaviors depending on the value of the

thread indices.

To achieve efficiency on the GPU, algorithm designers

must account for the substantially higher cost (two orders

of magnitude higher) to access fresh data from the GPU

main memory. This penalty is paid for the first data ac-

cess, though additional contiguous data in the main memory

can be accessed cheaply after this first penalty is paid. An

application that achieves such efficient reads and writes to

contiguous memory is said to be coalesced. Thus program-

ming on the nonuniform memory architecture of the GPU

requires that each of the operations be defined in a way

that ensures that main memory access (reads and writes)

are minimized and each piece of data that is read has sig-

nificant computation performed on it; read/writes should be

coalesced as far as possible when they occur.

1.2. Present contribution

In this paper we focus on a GPU implementation of the

Canny edge detector [3]. This algorithm has remained a

standard in edge finding techniques over the years. Appli-

cations of edge detection include their use as features in

vision algorithms, their use to improve the appearance of

displayed objects, in image coding and others too numer-

ous to discuss. Many implementations of the Canny al-

gorithm have been made on various platforms in the past,

including in the earlier GPGPU. A partial Canny edge fil-

ter for the GPU has been presented in OpenVIDIA using

NVIDIA’s Cg shader language [7]. This implementation,

however, does not include the hysteresis labeling connected

component part. Neoh and Hazanchuk [5] have presented

an implementation on the Field-programmable gate array

(FPGA), again without the connected components part. In

both cases, the reason for the lack of the connected com-

ponent is related to the need for non-local memory, which

causes significant slowdowns.

On the CPU several versions are available, with varying

efficiency. Matlab is typical of most CPU implementations,

and has a library function to find edges using the Canny

technique. Recently, the Intel Open Computer Vision Per-

formance Library (OpenCV) [6] contains a CPU assembly

optimized version of the Canny detector, capable of mul-

tithreaded multi-core operation, and this is the benchmark

against which we will compare our algorithm. On modern

multicore systems this is much faster than any other im-

plementation by an order of magnitude, including Matlab’s

image processing toolkit version.

In the following sections we present a brief introduc-

tion to the Canny algorithm, followed by a discussion of

how various parts of it were mapped to the GPU architec-

ture. We next describe its (relatively straightforward) im-

plementation as a command under Matlab. We then present

benchmark computations that show the performance that is

achieved for various standard images. Significant speedups

are reported against the Matlab version (~30 to 80 times),

while an approximately three to five fold improvement

against the Intel OpenCV version running on a state of the

art Intel processor. Our results clearly demonstrate the pro-

grammer friendly approach in CUDA, allows the layout of

relatively complex algorithms and data structures in a way

that allows the efficiency of these processors to be exploited.

2. The Canny Algorithm

Canny [3] defined optimal edge finding as a set of cri-

teria that maximize the probability of detecting true edges

while minimizing the probability of false edges. He found

that the zero-crossings of the second directional derivative

of a smoothed image were a reasonable measurement of ac-
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tual edges. To smooth the image, the Canny edge detector

uses Gaussian convolution. Next, the image is convolved

with a 2D first derivative operator to determine regions of

sharp changes in intensities. The gradient magnitude and

direction at each pixel are calculated in this step. Note

that the maxima and minima of the first derivative gradi-

ent are the same as the zero-crossings of the second direc-

tional derivative. Only the maxima crossings are of interest

because these pixels represent the areas of the sharpest in-

tensity changes in the image [4]. These zero-crossings are

the ridge pixels that represent the set of possible edges. All

other pixels are considered non-ridge and subsequently sup-

pressed. Finally, a two-threshold technique or hysteresis is

performed along the ridge pixels to determine the final set

of edges.

Instead of using a single threshold value for filtering

ridge pixels, the Canny algorithm implements a connected

components analysis technique based on a hysteresis thresh-

olding heuristic. This step uses two thresholds, t1, t2 where

t1 > t2, to partition the ridge pixels into edges/non-edges.

Pixels with gradient magnitudes above t1 are classified as

definite edges. Pixels between t2 and t1 are classified as

potential edges. Pixels under t2 are classified as non-edges.

Next, all potential edges that can be traced back to a def-

inite edge via adjacent potential edges are also marked as

definite edges. The process solves some of the issues asso-

ciated with edge streaking and discontinuity in the results

achieved by simple detectors by identifying strong edges

while accounting for comparatively weaker ones.

2.1. Algorithm costs on a CPU

Given an M × N image, an examination of a standard

Canny edge detector implementation using a Gaussian filter

with a 1D window sizeW pixels, a Sobel operator with a 1D

aperture of Y pixels, and that yields K candidate edges on

a serial processing machine shows the following run-times:

Functions Operations

Smoothing w. Separable Filters 2WMN
Gradients via 1-D Sobel 2YMN
Non-maximum Suppression 2MN
Hysteresis comparisons <MN

Two special functions are needed, which add to the costs:

Gradient Magnitude MN (Square root function)

Gradient Direction MN (Arc-tangent function)

3. GPU Algorithm

The GPU hardware allows for fast performance of pixel-

wise operations required for a Canny edge detector imple-

mentation. Many steps such as gradient finding, convolu-

tion, and non-maximum suppression can be performed in

parallel on a pixel-wise level. Our implementation is part of

an application that is designed to process 24-bit RGB im-

ages after performing a grayscale conversion, while satis-

fying Canny’s criteria for optimal edge finding. While this

is basically the Canny detector running on a per color ba-

sis, the memory pattern makes it unique enough. A version

that is meant to operate on 8-bit grayscale images, or higher

bit-depth grayscale images can be easily adapted from our

version. The primary goal is to get an optimized parallel

algorithm that utilizes the NVIDIA N80 SIMD architecture

model and processing power of the GPU. We first use a sep-

arable filter algorithm, similar to the one supplied with the

CUDA toolkit to implement the Gaussian smoothing [9].

Our implementation has a host processing component

and a kernel (GPU) component. The host component con-

sists of a fast retrieval and decompression of video or image

data into accessible arrays for kernel processing. We used

OpenCV, a third party computer vision library, to retrieve

the data. The format of our data array is in 24 bit row ma-

jor order with 8-bit width color channels. The data is then

loaded into GPU global memory. While, the transfer is not

a significant part of the access, in more dynamic situations,

e.g., where an incoming stream has to be processed online,

a direct transfer of data in to the GPU global memory might

be beneficial, and NVIDIA forums show that this feature for

the CUDA drivers has been requested by many users. The

kernel portion performs the necessary steps of the Canny

edge detector. Much of the implementation is optimized for

the CUDA architecture although some aspects are not yet as

efficient as we would like.

3.1. Efficient CUDA implementation

The target GPU used for testing is the NVIDIA 8800

GTX, which includes 128 SIMD stream processors working

together in groups of 8 to form 16 multiprocessors. Much

of the code as a result is based on optimizing the memory

usage, alignment, and size properties of the GPU architec-

ture. Additionally, we set additional conditions on the im-

age data beforehand to be processed. The image data must

be in a linear 24 bit per pixel format. Every “pixel” must be

constrained to 3 channels of 8bit width each. The suggested

color space is RGB since the Canny algorithm is best suited

for grayscale images converted from RGB space. The im-

age width and height must be of a multiple of 16 pixels to

fit global memory access alignment properties.

All of our kernel threads belong to groups of 256 or

16x16 threads per block. Each thread generally correlates

to a single pixel for processing since many of the Canny

algorithm operates on a pixel-wise basis.

CUDA global memory loads: To process data from

the GPU global memory space, the kernel threads must

meet the memory and alignment requirements for load-

ing data. Given the 24-bit per pixel data format, we can-

not have consecutive threads load their pixel data from

global memory as that would fail to meet alignment stan-

dards. To have coalesced memory access, each half-

warp or 16 threads must access the memory address of

HalfWarpBaseAddress + N [2]. Furthermore, single
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thread accesses are limited to reading 32-bit, 64-bit, or 128-

bit words from a single access making our 24-bit per pixel

format difficult.

Normally, a 16-thread half-warp processes 24*16=384

bits of data assuming a one-to-one correspondence between

thread and pixel. However, a one-to-one correspondence

with our data format does not meet memory alignment re-

quirements. The solution was to have the first 12 threads

of each row in a block load consecutive 32-bit unsigned

integers per iteration and dump 8-bit chunks of each 32-

bit load into shared memory space. Segmenting the 8-bit

chunks from the unsigned integers was done using fast bit-

wise operations available on the GPU. Subsequent stages of

processing were done after conversion into regular floats for

efficient floating point operations.

Figure 2. Code to read in RGB image in to shared memory.

The 12 threads still load the equivalent of 12*32=384

bits of global memory to be used per half-warp at the cost

of underutilizing 25% of the threads during the read. How-

ever, this was an acceptable cost since no bits were “redun-

dantly” read from global memory while achieving memory

coalesced reads.

Gaussian and Sobel Filtering: It is important to note

that Sobel and Gaussian filters are separable functions.

Generally, a non-separable filter of window size M × M
computes M2 operations per pixel, whereas for a separa-

ble filters are used, the cost would be reduced to computing

M+M = 2M operations. This is a two step process where

the intermediate results from the first separable convolution

is stored and then convolved with the second separable filter

to produce the output.
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Figure 3. Separable filter convolution.

The source image data is accessed through threads that

load a corresponding pixel into the block’s shared memory

space. Non-separated M × M filters require each thread

block to load an additional apron of �M/2�pixels wide.

The total number of pixels loaded into the apron is 4*16*

�M/2�+4* 2�M/2�. Apron pixels are necessary because

convolutions near the edge of a thread block will have to

access pixels normally loaded by adjacent thread blocks.

Since shared memory is local to individual thread blocks,

each block loads its own set of apron pixels before process-

ing. For a separated M × M filter, the apron does not

consist of corners since each filter would only need pix-

els along a single dimension. The total number of pixels

loaded is 4*16*�M/2� , which is a speedup compared to

the non-separated filters.For a Sobel filter of window size 3,

Non-separable Convolution Apron

Separable Convolution Apron

7x7  Fil ter Window

16x16 Thread B lock

228 A pr on Pixels

192 A pron  Pixels

Figure 4. “Apron” pixels are used in each block to accomodate the

filters.

the speedup is moderate. For larger filters such as the 2D

Gaussian where the window width may be larger than the

thread block, the speedups can be noticeable.

Gradient Computations: We use two functions to
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convolve the separable Sobel filters of aperture size 3, with

the source image and compute the gradients Gx and Gy at

each pixel. The horizontal pass convolves the source image

across the columns. The necessary apron pixels cannot be

all memory coalesced from global memory because they do

not belong to the same half-warp base address as the center

group. The use of some data structure could alleviate this,

but we have not attempted it yet. The vertical pass con-

volves the source image down the columns. The apron pix-

els here are memory coalesced because their addresses are

contiguous and property aligned above or below the cen-

ter group (See Fig. 4). To calculate the gradient strength,

we take the norm of the two gradients, while the gradient

direction is found by θ = arctan(Gy/Gx). The direction

is quantized to point to one of the neighboring pixels with

angles {π/8 + kπ/4}.

)
G

G
arctan(

x

y
=θ
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o45o
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o
90
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o
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Pixel Configurations

Figure 5. The gradient direction computations are quantized to

eight directions corresponding to neighbors.

CUDA non-maximum suppression: Once the gradi-

ent magnitude and direction data have been found, a new

function checks each pixel for the ridge criteria and sup-

presses all non-ridge pixels. Ridge pixels are defined as

the pixels with gradient magnitudes greater than both of its

adjacent pixels in the gradient direction. Non-ridge pixels

are suppressed by having their gradient magnitude set to 0.

The function also requires a 1 pixel wide apron around each

thread block since pixels along the perimeter have direc-

tional configurations extending outside of the normal pixel

group range of the thread block.

CUDA hysteresis and connected components: The

hysteresis and connected components algorithms are the fi-

nal steps to producing edges. For the hysteresis portion, a

high threshold and low threshold are specified by the user

beforehand. The process begins by marking all pixels with

gradient magnitudes over the high threshold as a “discov-

ered" definite edge. These pixels are placed into a queue

and become starting points for a breadth first search (BFS)

algorithm. We run the BFS by iterating through the queue

14079156

170188132155179185169

16064212188189199198

122199225177166155

133170188647764

Sample Gradient Magnitude Maxima

Gradient Direction

Ridge Pixels

Non-ridge Pixe ls

Figure 6. Non-maximum suppression used to find ridge pixels.

of pixels, process each pixel, and remove it from the queue

until it is empty.

All adjacent pixels (one of the 8 neighbors) are treated as

connected nodes to the current pixel. The criteria for adding

new pixels to the queue follows that an adjacent pixel that

has not been previously discovered and has a gradient mag-

nitude greater than the low threshold. Adjacent pixels that

meet the criteria are subsequently added to the BFS queue.

Every adjacent pixel is also marked as discovered once it

is checked against the criteria. After all adjacent pixels are

checked, the processed pixel is discarded from the queue.

The BFS terminates when the queue is empty.
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Figure 7. Generalized hysteresis and connected components al-

gorithm using breadth first search. Pixels over the t1 threshold

(t1 = 224,here) are added to the queue. BFS iterates through

undiscovered adjacent pixels and adds to queue if pixel value is

over t2 (t2 = 187, here).

Our algorithm is similar to the generalized BFS approach

but adheres to the specific constraints of the CUDA ar-

chitecture. Each thread block processes a separate set of

BFS on a group of pixels from the image. A group of

pixels is defined as the set of pixels aligned with its cor-

responding thread block plus a one pixel apron around

the block’s perimeter. The algorithm is divided into three

stages: Preprocessing, BFS, and write-back. In the pre-

processing stage, each thread checks if its corresponding
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pixel value has a gradient magnitude that is positive or non-

positive. We denote positive values as unprocessed pixels

and non-positive values as processed pixels. Unprocessed

pixels are marked in shared memory as definite, potential,

or non-edge if they fall greater, between, or less than the

high and low thresholds. We designate these edge states in

terms of non-positive values (-2, -1, 0) such that they can be

uniquely identified when stored in the same gradient mag-

nitude space.

In the BFS stage, each thread possesses its own queue.

Each thread initially checks if its corresponding pixel is a

potential edge. If a potential edge pixel is adjacent to one or

more definite edge pixels, it is added to the thread’s BFS

queue. Threads with non-empty queues will run a BFS

that connects all adjacent pixels classified as potential edge

states inside the thread block’s pixel group.

When all threads within a thread block have empty

queues, we write the edge states of all non-apron1 edges

in shared memory back into the gradient magnitude space

in global memory. After the algorithm terminates, subse-

quent calls of our algorithm will allow for pixels between

adjacent thread blocks to connect during the preprocessing

stage. The one pixel apron that is reloaded into shared mem-

ory every function call contains the updated edge states of

pixels from adjacent thread blocks that were processed in

previous iterations. This allows for new pixels with previ-

ously potential edge states to be processed at every subse-

quent function call.
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Figure 8. CUDA hysteresis and connected components with

breadth first search. Each thread performs a BFS on a group of

pixels. Pixel visited/processed states are tracked in shared mem-

ory and accessible to all threads in the thread block.

The main issue of hysteresis and connected components

in CUDA is the necessity for inter-thread block communi-

cation. Although threads within a thread block can be syn-

1Since apron pixels overlap into the address space of other pixel groups

and the G80 series does not support atomic writes to global memory.

chronized, threads in different blocks are not. This is prob-

lematic for a connected components algorithm when adja-

cent pixels belonging to adjacent thread blocks should be

connected but cannot because of the locality of threads. As

a result, a multi-pass approach solution is necessary. For

later testing purposes, we call the function four times per

iteration.
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Figure 9. Multi-pass hysteresis and connected components of two

adjacent thread blocks. After the first iteration, two pixel chains re-

main disconnected because two thread blocks performed process-

ing. After the second iteration, the chains connect because of up-

dated apron pixels.

3.2. Matlab interface

Many vision researchers prefer to develop and pro-

totype their algorithms in the Matlab environment.

While Matlab is primarily an interpreted environment,

and consequently performance can be poorer than in a

compiled language, Matlab is extensible and can call

compiled “mex” functions. We provided an interface

to a function callable from Matlab via the command

C=CudaEdgeRGB(A,thresL,thresH,hyster),

and a corresponding function for grayscale images.

The Matlab version was essentially a stripped down ver-
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sion of the original program. It was compiled with only one

.cu file since none of the OpenCV, OpenGL (for display),

and other interfaces were needed. Care was needed to ac-

count for the fact that the arrays are column-major order as

opposed to C’s row major order.

4. Results

For testing, we compared our GPU Canny implementa-

tion with an assembly optimized CPU implementation in

the OpenCV library, as well as against the Matlab toolbox

implementation. While CUDA speedups can be significant

against naive code, hand optimized code taking advantage

of special hardware and multimedia processing instructions

(SSE) can achieve competitive performance. Our results

for both tests were performed on the standard “Lena” and

“Mandrill” images.

OpenCV Comparison: The absolute runtimes of the

two algorithms were recorded and averaged over 1000 iter-

ations per test. Next, a functional breakdown of runtimes of

our implementation is recorded using NVIDIA’s cudaPro-

filer. This data set determines which portions of the imple-

mentation benefited the most from the CUDA design. For

specificity the hardware used is given below:

• CPU:Intel Core2 CPU 6600 @ 2.40 GHz, 2 GB RAM

• GPU: NVIDIA GeForce 8800 GTX, 768 MB global

memory (not overclocked)

Image Size CUDA (ms) OpenCV Speedup

256× 256 1.82 3.06 1.681

512× 512 3.40 8.28 2.435294

1024× 1024 10.92 28.92 2.648352

2048× 2048 31.46 105.55 3.353465

3936× 3936 96.62 374.36 3.874560

Results from “Lena” indicate that fewer edges in the

source image exhibit better performance in terms of relative

speedup between the GPU and CPU algorithms. Absolute

runtime of both CPU and GPU algorithms increases pro-

portionally with image dimension NxN. Relative speedup

is also linear, which is an indicating that the GPU imple-

mentation is memory bound rather than operation bound.

However, the functional runtime data indicates otherwise.

The hysteresis component of the implementation occu-

pies over 75% of the total runtime. This is not unexpected

because the hysteresis function takes a multi-pass approach

to connect edges between thread block. For testing, the hys-

teresis function is called four times per iteration and there-

fore occupies up to 18% of the total runtime per call. The

graphical results show that after four iterations the hystere-

sis sufficiently identified most of the edges in both the Man-

drill and Lena images. A higher number of passes showed

limited improvements to the final edge map and would oc-

cupy more processing time. Note, that the OpenVidia algo-

Figure 10. Results on the image Lena.

Figure 11. CUDA profiler output for “Lena.”

rithm does not have the hysteresis, and if we turn this part

off, we will get a 4 fold improvement.

Image Size CUDA (ms) OpenCV Speedup

256x240 1.63 3.92 2.405

512x496 3.60 12.25 3.403

1024x992 12.93 42.70 3.302

2048x1968 31.46 142.70 2.839

4096x3936 153.74 454.60 2.957

Results from the “Mandrill” test shows a moderate in-

crease in relative speedup as image sizes increases. The

speedup for higher image resolutions reaches an early

plateau at image size 1024x992. This is due to the high

edge count in larger image that causes more threads in the

hysteresis function to serialize.

The profiler data shows a similar breakdown of func-

tional runtimes with the previous test. Comparing the two

tests, the CUDA function performed better for low edge

count images in terms of both absolute runtimes and rela-

tive speedup with its CPU counterpart.

Matlab: The performance of the Matlab version (M)

and the Matlab CUDA (MC) version for the “Lena” and
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Figure 12. Results on image “Mandrill”

Figure 13. CUDA profiler output on “Mandrill”

“Mandrill” images respectively, at different resolutions are

shown below. A significant speedup is observed against the

toolbox function. For Matlab, we also developed an 8 bit

version for grayscale images, which shows similar process-

ing times (about 10% faster).

N × M
MC

(ms)

M

(ms)
N × M

MC

(ms)

M

(ms)

256x256 4.7 102 240x256 4.4 103

512x512 8.6 408 496x512 8.6 429

1024x1024 22.7 1706 992x1024 24.9 1827

2048x2048 75.4 6726 1968x2048 92.1 7065

3936x3936 227.7 26020 3936x4096 309 28388

Canny results from the OpenCV, Matlab, and our imple-

mentation all produced the stronger edges in the images.

However, results were not identical due to possible differ-

ences in implementation. The Matlab edge function uses a

derivative of a 2D Gaussian of a variable window size to

find the gradients whereas we use a Sobel filter of width 3.

5. Conclusions

We have demonstrated a version of the complete Canny

edge detector under CUDA, including all stages of the algo-

rithms. A significant speedup against straight forward CPU

functions, but a moderate improvement against multi-core

multi-threaded CPU functions taking advantage of special

instructions was seen. The implementation speed is dom-

inated by the hysteresis step (which was not implemented

in previous GPU versions). If this postprocessing step is

not needed the algorithm can be much faster (by a factor of

four). We should emphasize that the algorithms used here

could be made more efficient, and further speedups should

be possible using more sophisticated component data par-

allel algorithms. Our experience shows that using CUDA

one can move complex image processing algorithms to the

GPU. The software is available from the 1st author’s site.
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