
Middleware for Scientific Computing on GPUs from Fortran 95

Yuancheng Luo, Ramani Duraiswami, Nail A. Gumerov, Kate Despain, William D. Doland

Perceptual Interfaces and Reality Laboratory,

Institute for Advanced Computer Studies,

 University of Maryland, College Park

Abstract
Scientific computing and numerical analysis techniques

have been widely adapted and implemented in the Fortran

language since its inception. Many successive versions of

Fortran have allowed new functionalities to be incorporated

into the language while maintaining backward compatibility

with older code. The current standard, Fortran 2003, is

extensively used in high-performance computing on

supercomputers and computer clusters. While Fortran users

may have access to these nodes, fast processing times are still

possible on a single desktop system. The graphical processing

unit (GPU) on modern graphic cards can perform a large

amount of instructions in parallel execution. By employing

programmable GPUs and their respective frameworks, many

scientific computations are sped-up over their CPU

counterparts at a high cost of rewriting code for specific GPU

architectures. To address this issue, we have developed a

middleware library on top of Fortran 95 and later versions

that interfaces with the GPU. Details of the middleware’s

design and model are presented with the results from a sample

application. The source code is available as open source.

1 Introduction
Recent developments in high performance graphics

hardware have given rise to fast parallel-processing processors

capable of performing at several hundred gigaflops. These

graphics hardware are relatively inexpensive and easily

installable on most workstations while allowing for a

multifold increase in potential computational power. However

the hardware is not easily programmable which is a

concerning issue for its use in scientific computing.

Figure 1: GPU and CPU growth in speed over the last 6 years.

In early 2007, GPU manufactures such as NVIDIA and

AMD/ATI have released a type of compute coprocessors that

have exposed certain functionalities of the graphics device

through the use of new device models accessible via common

low-level programming languages. The AMD/ATI Firestream

[3] GPUs are programmable through an open-source C-based

language Brook+ and allow access to the Compute

Abstraction Layer (CAL), a low level access to the GPU [4].

On the NVIDIA side, recent advances of its own C-supported

programming model (Compute Unified Device Architecture or

CUDA) [6] have yielded promising results in terms of

speedups and programmability over previous generations. We

have chosen the ladder architecture for development, and

subsequently use NVIDIA graphics boards (G80 GPU series)

for testing.

While NVIDIA’s NVCC compiler for CUDA allows for

compilation of host and kernel C code, its purpose is best

suited for generating optimized programs on the GPU. This is

ideal in the development of small applications and subroutines

but not for large-scale programs. Nevertheless, GPUs should

be considered as compute coprocessors capable of processing

large data sets provided from a CPU host cluster. In [8], a 30

GPU cluster simulated a large scale airborne dispersion event

using the lattice Boltzmann model. The implementation made

use of CG [7], a high-level shading language, pixel-buffer

ping-pong techniques, and OpenGL in C. However,

familiarity with these specialized methods was a prerequisite

to using such a system. To solve this problem, the middleware

library that we developed adds GPU functionality to a high-

level language, Fortran 95. The middleware library contains

functions that allow the Fortran user to directly access and

manipulate data on the GPU, perform a host of common

mathematical operations on the data set, and add new kernel

code into the library without exposing the core architecture of

the GPU or necessitating background knowledge of traditional

GPGPU computing methods. This middleware library thereby

serves as an abstraction layer between the low-level CUDA

model and the high-level Fortran applications used in

scientific computing.

2 Background
In the CUDA model, the GPU is a highly multithreaded

parallel processing device. Threads are defined in batches

within thread blocks which are executed on individual

multiprocessors on the GPU. Each multiprocessor contains a

shared pool of memory that allows the threads of a block

constant time (4 cycles) read and write access. A much larger

pool of global and texture memory located on the graphical

device is accessible to all threads across all blocks but with

longer read and write access costs (400-600 cycles). Threads

within the same thread block follow the principles of

Simultaneous Instruction Multiple Data (SIMD) to achieve

parallel data processing. Threads will also remain idle as they

wait for other threads in the block to complete their

instructions up to a synchronization point if divergence or

branching occurs. Each thread is assigned a unique thread ID

and blocks with a block ID for referencing in the code.

Additional considerations such as shared memory allocation

per thread block, local memory allocation per thread, number

of threads per block, and global memory access all affect the

overall efficiency of the program.

3 Design
The DevObject middleware is designed to prioritize ease

of use for Fortran 95 users and to establish an efficient data

access paradigm between the CPU and GPU hardware. The

DevObject application model is divided into three layers:

Fortran interface, C interface, and the CUDA kernels. While

the Fortran interface is visible to the user, the C environment

is not and is responsible for the management of the DevObject

library itself. Typical Fortran function calls in DevObject are

wrapper functions to C code which are supported by the

CUDA architecture. Kernel functions, as well as NVIDIA

included CUBLAS and CUFFT library functions are made

accessible to the Fortran user through this process.

3.1 Framework
The upper level of the DevObject Fortran framework

defines a data structure (devVar or device variable), that

encapsulates a number of parameters associated with the

device memory addresses, dimensions of data, alignment

information, and memory allocation status. In practice, device

variables, which are stored on the Fortran host side, allow for

data migration between the GPU and CPU in vector and

matrix storage formats. Disparities between the memory

formats on the host and device are addressed in the next

section.

DevObject Fortran implements a number of wrapper

functions to interface with C level code. Included in the C

level are function calls used to access particular CUDA

kernels as well as loader functions used to run external

modules (cubin files) or user created CUDA functions.

DevObject

Fortran-C

Wrappers/Interfaces

C/CUDA

DevObject Framework

Fortran Level

CUBLAS/CUFFT

Functionality

Device Kernels

Figure 2: The DevObject framework contains three layers of

interaction; the Fortran layer interacts with the DevObject library that

interfaces with lower level C and CUBLAS functions which in turn

allows operability to CUDA device kernels.

The DevObject library also has direct access to the released

single-precision CUBLAS and CUFFT library functions.

Similarly, DevObject uses a combination of Fortran wrappers

and device variables to make successive calls to these

libraries.

3.2 Memory Model
One notable disparity between Fortran and C is its use of

different storage formats for multi-dimension arrays in linear

memory. Fortran’s column-major format conflicts with C and

CUDA memory row-major storage formats. The solution

presented itself in the CUBLAS library; the library was

originally developed to interface with the Fortran language

and consequently uses the same column-major 1-base

indexing format. DevObject integrates these CUBLAS

functions into its memory management process.

DevObject’s memory model is optimized for fast

processing on the GPU device. A number of considerations to

CUDA’s memory architecture are addressed so that proper

data alignment, grid/block/thread sizes, and shared memory

constraints are met prior to kernel execution. In terms of the

memory model, DevObject forces the dimensions of data

elements on the device to align with multiples of 256 for

vectors, 16x16 for 2-D arrays, and 8x8x4 for 3-D matrices. No

data padding is used due to the large overhead costs of

realignment between memory transfers.

DevObject Memory Model

DevObject Instantiation: type(devVar)

Allocation: allocate_dv(chartype, nx, ny, nz)

Deallocation: deallocate_dv(dv_A)

Memory Transfer: transfer_{i, r, c}4(A, dv_A, direction)

cublasAlloc

cublasSetVector

cublasSetMatrix

cublasGetVector

cublasGetMatrix

cublasFree

Adjust dimensions on device

Figure 3: The memory model is based on the CUBLAS column-

major storage and 1-based indexing. A number of helper functions

from the CUBLAS library are used to facilitate data allocation and

transfer on the GPU device.

The device variable encapsulates a number of parameters

and attributes of the data structure transferred between host

and device. The user is able to instantiate device variables in

the Fortran code once the library is loaded. Use of

DevObject’s memory functions allow the device variables to

track newly allocated space on the GPU, pass data between

Fortran arrays and the device memory, and free up device

variables or device memory when more space is needed.

DevObject Structure

devVar

Device Pointer

Device Dimensions

Device Leading
Dimensions

Device Status

Device Data Type

Pointer to device memory
address

Data type stored on device

Allocation status on device

X, Y, Z dimensions of vector
or matrix on host

XL, XYL leading dimensions
of vector or matrix on
device

Figure 4: The device variable data structure contains explicit

attributes regarding its data type and dimensions as well as the

memory address on the GPU device and memory allocation status.

3.3 CUDA Runtime and Driver API
The DevObject library concurrently uses the CUDA

driver and runtime APIs. The low-level driver API is able to

link to both generated host code or execute external cubin

objects on the device. The high-level runtime API is only able

to link to host code for execution. Aside from the

aforementioned differences, both APIs have otherwise the

same capabilities in terms of kernel speed, interoperability

with other 3
rd

 party APIs such as OpenGL and DirectX, and

execution model.

The use of the two CUDA APIs addresses concerns

regarding DevObject’s development and ease of use.

Compared to the Driver API, the runtime API contains a

simplified kernel execution procedure with its predefined

implicit initialization, context management, and module

management via configuration syntax. Furthermore, all kernel

host code generated by the NVCC compiler is based off

CUDA runtime so; the driver API that links to kernel code

compiled on the host may not be streamlined. The driver API

is language independent but requires explicit configurations

and kernel parameters for kernel launches. Additionally, it

does not provide kernel or software emulation for debugging

purposes.

DevObject API

DevObject

CUDA Runtime API CUDA Driver API

DevObject Core
Functionality

DevObject Ancillary
Functionality

Custom External
CUDA Kernel Loader

(.cubin files)

Generic CUDA
Kernel Invokers

Copy, Zeros,

Scaling, Conjugate,
Scalar Multiplication

CUDA Data Primitive
Library (CUDPP):
Scan, Radix Sort,

Sparse Matrix

Multiplication

Bitonic Sort, Matrix
Transpose

CUBLAS

CUFFT

User Content

Figure 5: DevObject uses both the CUDA runtime and driver API.

The runtime API provides a more rigid yet manageable access to the

integrated components of the DevObject library. The Driver API is

used as an extension for calling user created external functions

(within cubin files) without the need to directly interface with the C

code base.

DevObject’s use of both APIs gives it a flexible

framework for managing and launching its own internal

functions while providing options for external development

and incorporation of custom CUDA functions. The runtime

API manages all the core and ancillary functionalities related

to the CUBLAS/CUFFT libraries, memory control, and data

scaling. The ancillary branch includes additional integrated

libraries such as the CUDA Data Parallel Primitives (CUDPP)

and other matrix based operations.

The driver API is designed to load and execute cubin

objects that are written externally and imported by the user.

Module management of multiple cubin objects is done on the

C level and remains independent of any Fortran processes.

The DevObject library also contains a number of generic

function invokers, callable from the Fortran that pre-computes

the kernel block-shape, passes the necessary arguments to the

kernel object, and launches the grid for execution. User

developed CUDA functions that follow a particular parameters

format are thereby executable by our kernel caller.

3.4 Work-Cycle
The DevObject work-cycle begins by compiling and

linking our library with any existing Fortran code. To use the

library, the library’s initialization function must be called.

Here, the particular GPU device is set for use and the driver

API context is created. Once the library is loaded for use,

DevObject subroutines and functions can be called from any

Fortran environment.

Device variables, which are DevObject’s functional link

between host and device, are created by the user. The data

type, dimension, and size of the device variables are all

specified by user parameters and dynamically allocated in the

GPU global memory space. Any number of device variables

can be created in this fashion while memory is available on the

GPU. DevObject will not garbage collect unused device

variables or device memory so an explicit deallocation

subroutine must be called to free additional space. Once the

device variables are allocated, host data can be quickly copied

onto the device.

DevObject Work Cycle

Load DevObject Library

Allocate Device

Variable(s)

Memory Transfer

Host to Device

Work

Memory Transfer
Device to Host

Allocates and pads

memory on GPU Device

Transfer host data from

Fortran to CUDA global

memory

Call CUBLAS, CUFFT,

CUDPP, CUDA functions

and perform all

calculations on the GPU

Transfer data back from

device to host

Specify GPU device,

load CUBLAS library

Figure 6: The Fortran-DevObject work cycle allows for data

computation to occur solely on the GPU without write-backs to the

host CPU.

The work-cycle primarily consists of calling subsequent

CUDA function kernels to perform operations on the GPU

data. The advantage of this method lays in the faster parallel

computation of large data sets as a result of asynchronous

kernel executions and the preclusion of any memory

transferring operations between the host and device during this

time.

3.5 Usage
All DevObject library functions are placed in sub-

modules defined under the main module devObject. To access

the DevObject library functions in Fortran, include or use

devObject in any subroutine or module and compile the code

with the library.

The library functions become available only after a call to

subroutine open_devObjects. Likewise, a call to

close_devObjects will cease all of DevObject’s functionalities.

These subroutines also initialize and close the CUBLAS

library so after the call open_devObjects or close_devObjects,

all CUBLAS functions become available or unavailable so

additional calls to CUBLAS_INIT and

CUBLAS_SHUTDOWN are unnecessary.

Fortran 95 allows operator overloading between derived

types. The DevObject library has overloaded its devVar

structure with custom point-wise operations that are used to

evaluate expressions assigned to other device variables. The

evaluation function and memory management of intermediate

computations of expressions run on Fortran’s implicit

evaluation stack. Intermediate calculations are carried out in

temporarily allocated device variables on this stack and

deallocated while parts of the expression are evaluated and

concatenated. This is to ensure that other device variables

defined by the user are not affected in the process.

Figure 7: Example of Fortran code and device variable point-wise

expression evaluations on 4 arrays of type real and dimensions

1024x1024

4 Applications
The DevObject library is extensible to many fields in

mathematics and physics. In [5], an application of plasma

turbulence using the CUFFT library achieved a speedup of 25

over the native Fortran code having been ported to the

DevObject library. Another application of radial basis fitting

to scattered data using the iterative [1] achieved a remarkable

speedup of 662 over the serial CPU code. Here, we present a

simple mathematical application of the Mandelbrot set [2] as

defined by the set of complex numbers c such that the

complex quadratic polynomial czz ii +=
+

2

1
remains

bounded after a finite number of iterations n specified by the

user.

4.1 Implementation
An implementation of the Mandelbrot code is developed

in CUDA and callable as a custom kernel function by

DevObject for the GPU. The function takes as input the

domain of the Mandelbrot set, the number of iterations until

convergence, and the image dimensions for the output. The

output format consists of densely packed 32bit integer

channels representing RGB.

Figure 8: The kernel code used for computing the Mandelbrot set.

The Mandelbrot set Z and constants C are setup by a

thread by pixel mapping. Each thread corresponds to a discrete

position scaled along the domain and maps to a pixel in the

final output. Computation of the set is done as each thread

computes the next element in its series until numeric

divergence occurs. Divergence of the Mandelbrot set is

defined when the Z value’s norm is greater than 2.

Convergence is defined as having not diverged after n

iterations. The final coloring is a function of the number of

iterations before divergence.

4.2 Results
The same implementation is reproduced in a serialized

Fortran algorithm that runs on the CPU. The timings from

both the DevObject and native Fortran sources are recorded

and compared. For a control, the CUDA Mandelbrot code

from the NVIDIA SDK provides a lower bound for kernel

runtime on the device. For specificity, the hardware used is

given below.

• CPU: Intel Core2 CPU 6600 @ 2.40 GHz, 2 GB RAM

• GPU: NVIDIA GeForce 8800 GTX, 768 MB global memory

(not over-clocked)

• Single Precision, Domain of Real in [-2.1, 1.1], Complex in

[-1.6, 1.6], Bounded iterations 512, timing in seconds

Image Size 4096x4096 2048x2048 1024x1024

DevObject Kernel 0.11232 0.03125 0.01054

DevObject + Memory

Operations:

0.28125

0.07812

0.01562

Fortran 44.5000 11.14062 2.78125

NVIDIA 0.09985 0.03315 0.01652

Table 1: Mandelbrot Results: DevObject kernel refers to the kernel

processing time, DevObject + Memory Operations include times

from memory allocation and transferring operations from the host to

the device, Fortran refers to times produced by the CPU algorithm,

and NVIDIA refers to the kernel times produced from the Mandelbrot

sample code in the SDK.

A speedup of over 140X is found between the Fortran and

DevObject Mandelbrot implementations. The DevObject

kernel runtimes are nearly identical to that of SDK’s due to the

similarities in the code. The cost of memory allocation and

transfer are nontrivial as the runtimes scale non-linearly as the

dimension sizes increase.

Figure 9: The Mandelbrot set from domain

R in [-2.1, 1.1], C in [-1.6, 1.6] generated by DevObject for image

size 4096x4096 after 512 iterations in .28125 seconds.

5 Conclusions
We have demonstrated that a middleware over Fortran

can efficiently interfaces with the CUDA architecture on

NVIDIA GPUs. DevObject’s memory model allows pointers

to device memory to be managed on the host within an

encapsulated device variable. DevObject’s callable functions

in Fortran allow operations to be performed on the device

variables that in turn operate on the device memory. The two

runtime and driver APIs preserve core functionalities within

the library while allowing custom CUDA code to be interfaced

with the library. Finally, a sample application of the

Mandelbrot set is shown to have significant speedups when

computed with our middleware. We plan to add new

applications of numerical analysis as we expand DevObject’s

functionalities.

6 References
[1] A. Faul, G. Goodsell, M.J. Powell, “A Krylov subspace

algorithm for multiquadric interpolation in many dimensions,”

IMA J. Numer. Anal., 25, 1-24, 2005.

[2] Benoit B. Mandelbrot. “Fractal aspects of the iteration of

for complex and z”. In R. H. G. Helleman, editor,

Non-Linear Dynamics, volume 357 of Annals of the New York

Academy of Sciences, pages 249-259. New York Academy of

Sciences, 1980.

[3] http://ati.amd.com/products/streamprocessor/specs.html

[4] http://ati.amd.com/technology/streamcomputing/faq.html

[5] N.A. Gumerov, R. Duraiswami, and W. Dorland. “Middle-ware

for programming NVIDIA GPUs from Fortran 9X”.,

Supercomputing 2007.

[6] “NVIDIA Cuda Compute Unified Device Architecture

Programming Guide, V2.0”, NVIDIA Corp. 2008.

[7] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. “Cg:

a system for programming graphics hardware in a C-like

language”. ACM Trans. Graph. (SIGGRAPH), 22(3):896–907,

2003.

[8] Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover.

“GPU Cluster for High Performance Computing”. Proceedings

of Supercomputing, 2004.

