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Abstract 
Scientific computing and numerical analysis techniques 

have been widely adapted and implemented in the Fortran 

language since its inception. Many successive versions of 

Fortran have allowed new functionalities to be incorporated 

into the language while maintaining backward compatibility 

with older code. The current standard, Fortran 2003, is 

extensively used in high-performance computing on 

supercomputers and computer clusters. While Fortran users 

may have access to these nodes, fast processing times are still 

possible on a single desktop system. The graphical processing 

unit (GPU) on modern graphic cards can perform a large 

amount of instructions in parallel execution. By employing 

programmable GPUs and their respective frameworks, many 

scientific computations are sped-up over their CPU 

counterparts at a high cost of rewriting code for specific GPU 

architectures. To address this issue, we have developed a 

middleware library on top of Fortran 95 and later versions 

that interfaces with the GPU. Details of the middleware’s 

design and model are presented with the results from a sample 

application. The source code is available as open source. 

 

1 Introduction 
Recent developments in high performance graphics 

hardware have given rise to fast parallel-processing processors 

capable of performing at several hundred gigaflops. These 

graphics hardware are relatively inexpensive and easily 

installable on most workstations while allowing for a 

multifold increase in potential computational power. However 

the hardware is not easily programmable which is a 

concerning issue for its use in scientific computing. 

 

 
Figure 1: GPU and CPU growth in speed over the last 6 years. 

 

In early 2007, GPU manufactures such as NVIDIA and 

AMD/ATI have released a type of compute coprocessors that 

have exposed certain functionalities of the graphics device 

through the use of new device models accessible via common 

low-level programming languages. The AMD/ATI Firestream 

[3] GPUs are programmable through an open-source C-based 

language Brook+ and allow access to the Compute 

Abstraction Layer (CAL), a low level access to the GPU [4]. 

On the NVIDIA side, recent advances of its own C-supported 

programming model (Compute Unified Device Architecture or 

CUDA) [6] have yielded promising results in terms of 

speedups and programmability over previous generations. We 

have chosen the ladder architecture for development, and 

subsequently use NVIDIA graphics boards (G80 GPU series) 

for testing. 

While NVIDIA’s NVCC compiler for CUDA allows for 

compilation of host and kernel C code, its purpose is best 

suited for generating optimized programs on the GPU. This is 

ideal in the development of small applications and subroutines 

but not for large-scale programs. Nevertheless, GPUs should 

be considered as compute coprocessors capable of processing 

large data sets provided from a CPU host cluster. In [8], a 30 

GPU cluster simulated a large scale airborne dispersion event 

using the lattice Boltzmann model. The implementation made 

use of CG [7], a high-level shading language, pixel-buffer 

ping-pong techniques, and OpenGL in C.  However, 

familiarity with these specialized methods was a prerequisite 

to using such a system. To solve this problem, the middleware 

library that we developed adds GPU functionality to a high-

level language, Fortran 95.  The middleware library contains 

functions that allow the Fortran user to directly access and 

manipulate data on the GPU, perform a host of common 

mathematical operations on the data set, and add new kernel 

code into the library without exposing the core architecture of 

the GPU or necessitating background knowledge of traditional 

GPGPU computing methods. This middleware library thereby 

serves as an abstraction layer between the low-level CUDA 

model and the high-level Fortran applications used in 

scientific computing. 

 

2  Background 
In the CUDA model, the GPU is a highly multithreaded 

parallel processing device. Threads are defined in batches 

within thread blocks which are executed on individual 

multiprocessors on the GPU. Each multiprocessor contains a 

shared pool of memory that allows the threads of a block 

constant time (4 cycles) read and write access. A much larger 

pool of global and texture memory located on the graphical 

device is accessible to all threads across all blocks but with 

longer read and write access costs (400-600 cycles). Threads 

within the same thread block follow the principles of 

Simultaneous Instruction Multiple Data (SIMD) to achieve 

parallel data processing. Threads will also remain idle as they 

wait for other threads in the block to complete their 

instructions up to a synchronization point if divergence or 

branching occurs. Each thread is assigned a unique thread ID 

and blocks with a block ID for referencing in the code. 

Additional considerations such as shared memory allocation 

per thread block, local memory allocation per thread, number 

of threads per block, and global memory access all affect the 

overall efficiency of the program. 



 

3 Design 
The DevObject middleware is designed to prioritize ease 

of use for Fortran 95 users and to establish an efficient data 

access paradigm between the CPU and GPU hardware. The 

DevObject application model is divided into three layers: 

Fortran interface, C interface, and the CUDA kernels. While 

the Fortran interface is visible to the user, the C environment 

is not and is responsible for the management of the DevObject 

library itself. Typical Fortran function calls in DevObject are 

wrapper functions to C code which are supported by the 

CUDA architecture. Kernel functions, as well as NVIDIA 

included CUBLAS and CUFFT library functions are made 

accessible to the Fortran user through this process. 

 

3.1 Framework 
The upper level of the DevObject Fortran framework 

defines a data structure (devVar or device variable), that 

encapsulates a number of parameters associated with the 

device memory addresses, dimensions of data, alignment 

information, and memory allocation status. In practice, device 

variables, which are stored on the Fortran host side, allow for 

data migration between the GPU and CPU in vector and 

matrix storage formats. Disparities between the memory 

formats on the host and device are addressed in the next 

section.  

DevObject Fortran implements a number of wrapper 

functions to interface with C level code. Included in the C 

level are function calls used to access particular CUDA 

kernels as well as loader functions used to run external 

modules (cubin files) or user created CUDA functions. 
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Figure 2: The DevObject framework contains three layers of 

interaction; the Fortran layer interacts with the DevObject library that 

interfaces with lower level C and CUBLAS functions which in turn 

allows operability to CUDA device kernels. 

 

The DevObject library also has direct access to the released 

single-precision CUBLAS and CUFFT library functions. 

Similarly, DevObject uses a combination of Fortran wrappers 

and device variables to make successive calls to these 

libraries. 

 

3.2 Memory Model 
One notable disparity between Fortran and C is its use of 

different storage formats for multi-dimension arrays in linear 

memory. Fortran’s column-major format conflicts with C and 

CUDA memory row-major storage formats. The solution 

presented itself in the CUBLAS library; the library was 

originally developed to interface with the Fortran language 

and consequently uses the same column-major 1-base 

indexing format. DevObject integrates these CUBLAS 

functions into its memory management process. 

DevObject’s memory model is optimized for fast 

processing on the GPU device. A number of considerations to 

CUDA’s memory architecture are addressed so that proper 

data alignment, grid/block/thread sizes, and shared memory 

constraints are met prior to kernel execution. In terms of the 

memory model, DevObject forces the dimensions of data 

elements on the device to align with multiples of 256 for 

vectors, 16x16 for 2-D arrays, and 8x8x4 for 3-D matrices. No 

data padding is used due to the large overhead costs of 

realignment between memory transfers. 
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Figure 3: The memory model is based on the CUBLAS column-

major storage and 1-based indexing. A number of helper functions 

from the CUBLAS library are used to facilitate data allocation and 

transfer on the GPU device. 

 
The device variable encapsulates a number of parameters 

and attributes of the data structure transferred between host 

and device. The user is able to instantiate device variables in 

the Fortran code once the library is loaded. Use of 

DevObject’s memory functions allow the device variables to 

track newly allocated space on the GPU, pass data between 

Fortran arrays and the device memory, and free up device 

variables or device memory when more space is needed. 
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Figure 4: The device variable data structure contains explicit 

attributes regarding its data type and dimensions as well as the 

memory address on the GPU device and memory allocation status. 

 

3.3 CUDA Runtime and Driver API 
The DevObject library concurrently uses the CUDA 

driver and runtime APIs. The low-level driver API is able to 

link to both generated host code or execute external cubin 

objects on the device. The high-level runtime API is only able 

to link to host code for execution. Aside from the 

aforementioned differences, both APIs have otherwise the 

same capabilities in terms of kernel speed, interoperability 

with other 3
rd

 party APIs such as OpenGL and DirectX, and 

execution model.  

The use of the two CUDA APIs addresses concerns 

regarding DevObject’s development and ease of use. 

Compared to the Driver API, the runtime API contains a 

simplified kernel execution procedure with its predefined 

implicit initialization, context management, and module 

management via configuration syntax. Furthermore, all kernel 

host code generated by the NVCC compiler is based off 

CUDA runtime so; the driver API that links to kernel code 

compiled on the host may not be streamlined. The driver API 

is language independent but requires explicit configurations 

and kernel parameters for kernel launches. Additionally, it 

does not provide kernel or software emulation for debugging 

purposes.  
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Figure 5: DevObject uses both the CUDA runtime and driver API. 

The runtime API provides a more rigid yet manageable access to the 

integrated components of the DevObject library. The Driver API is 

used as an extension for calling user created external functions 

(within cubin files) without the need to directly interface with the C 

code base. 

 
DevObject’s use of both APIs gives it a flexible 

framework for managing and launching its own internal 

functions while providing options for external development 

and incorporation of custom CUDA functions. The runtime 

API manages all the core and ancillary functionalities related 

to the CUBLAS/CUFFT libraries, memory control, and data 

scaling. The ancillary branch includes additional integrated 

libraries such as the CUDA Data Parallel Primitives (CUDPP) 

and other matrix based operations.  

The driver API is designed to load and execute cubin 

objects that are written externally and imported by the user. 

Module management of multiple cubin objects is done on the 

C level and remains independent of any Fortran processes. 

The DevObject library also contains a number of generic 

function invokers, callable from the Fortran that pre-computes 

the kernel block-shape, passes the necessary arguments to the 

kernel object, and launches the grid for execution. User 

developed CUDA functions that follow a particular parameters 

format are thereby executable by our kernel caller. 

 

3.4 Work-Cycle 
The DevObject work-cycle begins by compiling and 

linking our library with any existing Fortran code. To use the 

library, the library’s initialization function must be called. 

Here, the particular GPU device is set for use and the driver 

API context is created. Once the library is loaded for use, 

DevObject subroutines and functions can be called from any 

Fortran environment. 

Device variables, which are DevObject’s functional link 

between host and device, are created by the user. The data 

type, dimension, and size of the device variables are all 

specified by user parameters and dynamically allocated in the 

GPU global memory space. Any number of device variables 



can be created in this fashion while memory is available on the 

GPU. DevObject will not garbage collect unused device 

variables or device memory so an explicit deallocation 

subroutine must be called to free additional space. Once the 

device variables are allocated, host data can be quickly copied 

onto the device. 
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Figure 6: The Fortran-DevObject work cycle allows for data 

computation to occur solely on the GPU without write-backs to the 

host CPU. 

 
The work-cycle primarily consists of calling subsequent 

CUDA function kernels to perform operations on the GPU 

data. The advantage of this method lays in the faster parallel 

computation of large data sets as a result of asynchronous 

kernel executions and the preclusion of any memory 

transferring operations between the host and device during this 

time. 

 

3.5 Usage 
All DevObject library functions are placed in sub-

modules defined under the main module devObject. To access 

the DevObject library functions in Fortran, include or use 

devObject in any subroutine or module and compile the code 

with the library. 

The library functions become available only after a call to 

subroutine open_devObjects. Likewise, a call to 

close_devObjects will cease all of DevObject’s functionalities. 

These subroutines also initialize and close the CUBLAS 

library so after the call open_devObjects or close_devObjects, 

all CUBLAS functions become available or unavailable so 

additional calls to CUBLAS_INIT and 

CUBLAS_SHUTDOWN are unnecessary.  

Fortran 95 allows operator overloading between derived 

types. The DevObject library has overloaded its devVar 

structure with custom point-wise operations that are used to 

evaluate expressions assigned to other device variables. The 

evaluation function and memory management of intermediate 

computations of expressions run on Fortran’s implicit 

evaluation stack. Intermediate calculations are carried out in 

temporarily allocated device variables on this stack and 

deallocated while parts of the expression are evaluated and 

concatenated. This is to ensure that other device variables 

defined by the user are not affected in the process. 

 

 
Figure 7: Example of Fortran code and device variable point-wise 

expression evaluations on 4 arrays of type real and dimensions 

1024x1024 

 

 

4 Applications 
The DevObject library is extensible to many fields in 

mathematics and physics.  In [5], an application of plasma 

turbulence using the CUFFT library achieved a speedup of 25 

over the native Fortran code having been ported to the 

DevObject library. Another application of radial basis fitting 

to scattered data using the iterative [1] achieved a remarkable 

speedup of 662 over the serial CPU code. Here, we present a 

simple mathematical application of the Mandelbrot set [2] as 

defined by the set of complex numbers c such that the 

complex quadratic polynomial czz ii +=
+

2

1
remains 

bounded after a finite number of iterations n specified by the 

user.  

 

4.1 Implementation 
An implementation of the Mandelbrot code is developed 

in CUDA and callable as a custom kernel function by 

DevObject for the GPU. The function takes as input the 



domain of the Mandelbrot set, the number of iterations until 

convergence, and the image dimensions for the output. The 

output format consists of densely packed 32bit integer 

channels representing RGB.  

 

 
Figure 8: The kernel code used for computing the Mandelbrot set.  

 

The Mandelbrot set Z and constants C are setup by a 

thread by pixel mapping. Each thread corresponds to a discrete 

position scaled along the domain and maps to a pixel in the 

final output. Computation of the set is done as each thread 

computes the next element in its series until numeric 

divergence occurs. Divergence of the Mandelbrot set is 

defined when the Z value’s norm is greater than 2. 

Convergence is defined as having not diverged after n 

iterations.  The final coloring is a function of the number of 

iterations before divergence.  

 

4.2 Results 
The same implementation is reproduced in a serialized 

Fortran algorithm that runs on the CPU. The timings from 

both the DevObject and native Fortran sources are recorded 

and compared. For a control, the CUDA Mandelbrot code 

from the NVIDIA SDK provides a lower bound for kernel 

runtime on the device. For specificity, the hardware used is 

given below. 

 

• CPU: Intel Core2 CPU 6600 @ 2.40 GHz, 2 GB RAM 

• GPU: NVIDIA GeForce 8800 GTX, 768 MB global memory 

(not over-clocked) 

 

• Single Precision, Domain of Real in [-2.1, 1.1], Complex in 

[-1.6, 1.6], Bounded iterations 512, timing in seconds 

 
Image Size 4096x4096 2048x2048 1024x1024 

DevObject Kernel 0.11232 0.03125 0.01054 

DevObject +  Memory 

Operations: 

0.28125 

 

0.07812 

 

0.01562 

 

Fortran 44.5000 11.14062 2.78125 

NVIDIA 0.09985 0.03315 0.01652 

Table 1: Mandelbrot Results: DevObject kernel refers to the kernel 

processing time, DevObject  + Memory Operations include times 

from memory allocation and transferring operations from the host to 

the device, Fortran refers to times produced  by the CPU algorithm, 

and NVIDIA refers to the kernel times produced from the Mandelbrot 

sample code in the SDK.  

 
A speedup of over 140X is found between the Fortran and 

DevObject Mandelbrot implementations. The DevObject 

kernel runtimes are nearly identical to that of SDK’s due to the 

similarities in the code. The cost of memory allocation and 

transfer are nontrivial as the runtimes scale non-linearly as the 

dimension sizes increase. 

 

 
Figure 9: The Mandelbrot set from domain  

R in [-2.1, 1.1], C in [-1.6, 1.6] generated by  DevObject for image 

size 4096x4096 after 512 iterations in .28125 seconds. 

 

5 Conclusions 
We have demonstrated that a middleware over Fortran 

can efficiently interfaces with the CUDA architecture on 

NVIDIA GPUs. DevObject’s memory model allows pointers 

to device memory to be managed on the host within an 

encapsulated device variable. DevObject’s callable functions 

in Fortran allow operations to be performed on the device 



variables that in turn operate on the device memory. The two 

runtime and driver APIs preserve core functionalities within 

the library while allowing custom CUDA code to be interfaced 

with the library. Finally, a sample application of the 

Mandelbrot set is shown to have significant speedups when 

computed with our middleware. We plan to add new 

applications of numerical analysis as we expand DevObject’s 

functionalities. 
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