
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Local Gradient Descent Methods for GMM Simplification

Abstract

Gaussian mixture model simplification is a
powerful technique for reducing the number
of components of an existing mixture model
without having to re-cluster the original data
set. Instead, a simplified GMM with fewer
components is computed by minimizing some
distance metric between the two models. In
this paper, we derive an analytical expres-
sion for the difference between the probability
density functions of two GMMs along with its
gradient information. We minimize the ob-
jective function using gradient descent and
K-means. Both synthetic and non-synthetic
test cases are used in the experiments.

1. Introduction

Gaussian mixture models (GMMs) are a powerful tool
for estimating the probability density function of a
random variable x. Mixture models have found a
wide range of applications in different domains such as
speaker recognition, image processing, finances, etc.

The density of the known mixture model f at a point
x ∈ Rd is

f(x) =

Kf∑
k=1

πk,fη(x, µk,f ,Σk,f ),

Kf∑
k=1

πk,f = 1, πk,f ≥ 0,

(1)

where η is the normal distribution centered around µ
with a symmetric positive-definite covariance matrix
Σ

η(x, µ,Σ) = |(2π)dΣ|− 1
2 e−

1
2 (x−µ)T Σ−1(x−µ). (2)

Learning the mixture model is a clustering problem of-
ten done by estimating the number of components Kf

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

and iteratively maximizing a log-likelihood quantity

ln f(X) =

N∑
n=1

ln


Kf∑
k=1

πk,fη(xn, µk,f ,Σk,f )

 (3)

over a set of N independent and identically distributed
features. The parameters are estimated to a local op-
timum using the expectation-maximization (EM) al-
gorithm (Dempster et al., 1977).

Since it is difficult to specify the number of compo-
nents a priori, a GMM may over-fit the underlying
distribution. That is, the number of parameters is too
large and so we would like to reduce or simplify the
model by decreasing the number of components Kf .
One can recompute the model f with fewer compo-
nents using the standard EM algorithm but this is
costly when the data set is large. Instead, we use
Gaussian simplification to obtain new parameters for
a mixture model g that approximates f without ac-
cessing the original feature space.

Gaussian simplification is a process that finds a target
mixture model g with Kg < Kf components that is
similar to mixture model f . The density of the target
mixture model g at a point x ∈ Rd is

g(x) =

Kg∑
k=1

πk,gη(x, µk,g,Σk,g),

Kg∑
k=1

πk,g = 1, πk,g ≥ 0.

(4)

In prior works, the simplification problem is often
posed in terms of relative entropy between the mixture
models g and f . The Kullback-Leibler(KL) divergence
compares multiple distributions that may be optimized
by Bregman K-means in (Nielsen et al., 2009), (Gar-
cia et al.). A closed form of the Jensen-Rényi diver-
gence is minimized in (Hamza & Krim, 2003), (Wang
et al., 2009). The Unscented Transform Approxima-
tion (UTA) criterion approximates the KL divergence
between GMMs which can be maximized via an EM-
like algorithm (Goldberger et al., 2008).

We define similarity as the χ2 distance between the
probability distribution functions (PDFs) of mixture
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Local Gradient Descent Methods for GMM Simplification

models f and g. In section 2, we derive the approxima-
tion error between mixture models based on this simi-
larity measurement. In section 3, we look at methods
for minimizing the approximation error using gradient
information. In section 4, we run the methods on both
synthetic data generated by pre-defined distributions
and real-world features extracted from speech data.

2. χ2 Distance

The χ2 distance is the approximation error or the
squared difference between the PDFs of the mixture
models f and g sampled across the entire domain (Hall
& Hicks, 2004). The integral over the squared differ-
ence is our objective function, and has the form

F (θ) =

∫ ∞
−∞

(f(x)− g(x, θ))2dx

=

∫ ∞
−∞

f(x)2 − 2f(x)g(x, θ) + g(x, θ)2dx.

(5)

Eqn. 5 leads to a computable form as the products
of Gaussian components are unnormalized Gaussians
(Appendix 6.1). By integrating each term over the
entire domain, we are left with the weighted summa-
tion of unnormalized coefficients which are themselves
Gaussians

∫ ∞
−∞

f(x)2dx =

Kf∑
i

Kf∑
j

πi,fπj,fz
f
i,j ,

zfi,j = η(µi,f , µj,f ,Σi,f + Σj,f ),∫ ∞
−∞
−2f(x)g(x, θ)dx = −2

Kf∑
i

Kg∑
j

πi,fπj,gz
fg
i,j ,

zfgi,j = η(µi,f , µj,g,Σi,f + Σj,g),∫ ∞
−∞

g(x)2dx =

Kg∑
i

Kg∑
j

πi,gπj,gz
g
i,j ,

zgi,j = η(µi,g, µj,g,Σi,g + Σj,g).

(6)

We may simplify the notation by writing in matrix-
vector form. The set of weights for mixtures f and g
are treated as vectors. The unnormalized coefficients
populate the matrices Z. Note that the first term re-
mains constant as it consist only of elements from mix-

ture f . The objective function is equivalent to

F (θ) = vTf Z
fvf − 2vTf Z

fgvg + vTg Z
gvg,

Kg∑
k=1

vk,g = 1, vk,g ≥ 0,

vf = [π1,f , . . . , πKf ,f ]T , vg = [π1,g, . . . , πKg,g]
T ,

Zfij = η(µi,f , µj,f ,Σi,f + Σj,f ),

Zfgij = η(µi,f , µj,g,Σi,f + Σj,g),

Zgij = η(µi,g, µj,g,Σi,g + Σj,g).

(7)

3. Minimizing F (θ)

Directly minimizing the approximation error F (θ) in
Eqn. 7 leads to a non-linear system that is difficult to
solve. However, a first-order iterative method such as
gradient descent is possible. Recall that gradient de-
scent finds a local minimum by moving in the negative
gradient direction

θt+1 = θt − γ∇F (θ). (8)

To compute gradients, we differentiate F (θ) w.r.t.
each parameter. For convenience, we use vector no-
tation to represent the entire set of weight parame-
ters vg in the mixture model. For a component l, its
mean and covariance parameters are represented by
the vector µl,g and the symmetric positive definite ma-
trix Σl,g. Note that F (θ) is quadratic in terms of the
weight parameters vg and so its partial derivative is
linear. Thus, we can normalize the weights to sum to
1 at the end of each step without changing the sign of
the gradient. The partial derivatives (Appendix 6.3)
are

∂F

∂vg
= −2(vTf Z

fg − vTg Zg),

∂F

∂µl,g
= πl,g

 kf∑
i

πi,fηi,lµ
gf
l,iΣ

fg
i,l −

kg∑
j

πj,gηl,jµ
gg
l,jΣ

gg
l,j

 ,

∂F

∂Σl,g
= πl,g

 kf∑
i

πi,fηi,lΣ
fg
i,l

(
I − (µfgi,l )

Tµfgi,lΣ
fg
i,l

)

−
kg∑
j 6=l

πj,gηl,jΣ
gg
l,j

(
I − (µggl,j)

Tµggl,jΣ
gg
l,j

)− π2
l,gΣ

−1
l,g

2
√

(2π)d|2Σl,g|
,

µgfl,i = (µl,g − µi,f )T , Σfgi,l = (Σi,f + Σl,g)
−1,

ηi,l = η(µi,f , µl,g,Σi,f + Σl,g),

ηl,j = η(µl,g, µj,g,Σl,g + Σj,g).

(9)
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Local Gradient Descent Methods for GMM Simplification

To find a suitable γ coefficient, we minimize the func-
tional F (θ + γv) where v is the line search direction.
The first derivative with respect to γ can be approxi-
mated by a truncated Taylor expansion

F (θ + γv) ≈ F (θ) + γ
∂

∂θ
F (θ)T v +

γ2

2

∂2

∂θ2
F (θ)T v,

∂

∂γ
F (θ + γv) ≈ ∂

∂θ
F (θ)T v + γ

∂2

∂θ2
F (θ)T v.

(10)

Explicitly computing the second derivative Hessian
matrix is expensive. Instead, we use a secant method
for approximating the second derivative from a general
line search step in non-linear conjugate gradients op-
timization (Shewchuk, 1994). Setting the first partial
derivative to 0, we solve for the γ coefficient

∂2

∂θ2
F (θ) ≈

∂F (θ+σv)
∂θ − ∂F (θ)

∂θ

σ
for small σ,

0 =
∂

∂θ
F (θ)T v + γ

∂2

∂θ2
F (θ)T v,

γ = −σ ∇F (θ)T v

∇F (θ + σv)−∇F (θ)T v
, v = ∇F (θ).

The step size σ is initially an arbitrarily small value
and is set to the previous |γ| in subsequent itera-
tions. In practice, this secant approximation for line
searching is only used during the first few iterations to
quickly move towards a local minima. We revert back
to normal gradient descent with a fixed γ = 10−(d/3)

for vg, µg, and γ = 10−(d/3)−1 for Σg parameters.

It is also possible to perform local gradient descent
on similar components in order to decrease run-time
but with greater approximation error. The compo-
nents of mixture model f into Kg can be partitioned
into disjoint sets and local fitted for each component
in mixture model g (Zhang & Kwok, 2007). We con-
sider a similar approach that modifies the well known
K-means algorithm to run over mixture model g’s pa-
rameter space. This K-means algorithm alternates be-
tween an assignment followed by one or more update
steps.

1. Assignment step: Assign each of the Kf com-
ponents in the mixture model f to the most sim-
ilar components in the mixture model g.

S
(t)
i =

{
kj,f : D(kj,f , k

(t)
i,g) ≤ D(kj,f , k

(t)
i∗,g)

for all i∗ = 1, . . . ,Kg.
(11)

The distanceD between mixture components may
take on alternative forms such as the average
Kullback-Leibler, Bhattacharyya, and generalized

Rényi divergences. In this paper, we use the
similar χ2 distance formulation between pair-wise
components.

D(kj,f , k
(t)
i,g) =

∫ ∞
−∞

(kj,f − k(t)
i,g)2dx

= π2
j,fz

f
j,j − 2πj,fπi,gz

fg
j,i + π2

i,gz
g
i,i.

(12)

2. Update step: Modify the components of mix-
ture model g by performing local gradient descent.

θti = θt−1
i − γ∇F ∗i (θ)

∇F ∗i (θ) = ∇F (θ, πif , π
i
g),

πij,f =

{
0, j 6∈ S(t)

i

πj,f , j ∈ S(t)
i

πij,g =

{
0, j 6= i

πj,g, j = i

(13)

The gradient ∇F ∗i (θ) is now unique as each com-
ponent ki,g is mutually independent and can only

see the assigned components S
(t)
i in the mixture

model f .

The algorithm terminates when no new assignments
are made and the local components have converged.

4. Experiments

To obtain the source mixture model f , we perform EM
on both synthetic and real-world data. In the synthetic
case, we generate a random set of

Kf

2 weighted Gaus-
sian distributions and then randomly sample N points
from the distributions. This suggests that running EM
on the source data for Kf cluster will produce an over-
fitted model that we can simplify. For the initial con-
ditions of mixture model g, we suggest the Kg highest
weighted components from mixture model f . This al-
lows both gradient descent and K-means to start with
a configuration that is likely to be close to the global
minimum.

In Fig. 1, the local updates for K-means may cause
the the assignment step to oscillate between two or
more components. Gradient descent achieves the ex-
pected smaller approximation error than the K-means
method. In Fig. 2 for higher dimensional data where
the GMM components are more separated, the approx-
imation error is less pronounced. The K-means routine
performs 4 update steps for every assignment step and
terminates 3 times faster than the gradient descent
method.
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Local Gradient Descent Methods for GMM Simplification

(a) Over-fitted GMM (b) Function F (θ)

(c) Gradient descent (d) K-means

Figure 1. Comparison of gradient descent and K-means on
a 10 component mixture model simplified to 5. Original
GMM generated from 3000 points sampled across 5 normal
distributions of equal diagonal covariance, random mean,
random weight, 2 dimensions.

For non-synthetic inputs, we work with speech data
obtained from the NIST Speaker Recognition Evalu-
ation (SRE) 2008 collection. The raw data has been
transformed into 38 dimensional Mel-frequency cep-
strum coefficients, extracted from 30ms frames with
overlaps. These coefficients or speech features repre-
sent the short-term power spectrum of a sound and are
shown to approximate the human auditory system’s
response (Ganchev et al., 2005). In speaker recogni-
tion, a common first step is to learn a Universal Back-
ground Model (UBM) that represents general, person-
independent feature characteristics (Reynolds & Rose,
1995). This UBM is identical to a GMM that is trained
over a large set of speaker features. In Fig. 3, the ini-
tial components have closely related means but with
varying covariances. The K-means method oscillates
wildly during certain assignment steps. In the cases
of poor component assignment, performing local gra-
dient descent may actually increase the approximation
error.

5. Conclusions

We have shown that the analytical form of the differ-
ence between two PDFs of Gaussian mixture models
can be directly used for model simplification. The par-
tial derivatives derived from the analytical form can
be applied to such techniques as gradient descent and

(a) Over-fitted GMM (b) Function F (θ)

(c) Gradient descent (d) K-means

Figure 2. Comparison of gradient descent and K-means on
a 30 component mixture model simplified to 15. Origi-
nal GMM generated from 10000 points sampled across 15
normal distributions of equal diagonal covariance, random
mean, random weight, 10 dimensions. Graphs show a two
dimensional slice of the GMMs and data.

K-means for minimization. The experimental results
for synthetic data show that both techniques converge
to local minimums for components that are well sep-
arated along the means. The experimental results for
sound data where the components have locally close
means are less conclusive for the K-means approach.
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6. Appendix

6.1. Product of Multivariate-Gaussians

Theorem 6.1.1. The product of two Gaussian
η(x, µf ,Σf )η(x, µg,Σg) given the same random vari-
able x is an unnormalized Gaussian. We assume that
the covariance matrices are invertible and symmetric.
A constructive proof is presented below.

The product of Gaussians is derived from

η(x, µf ,Σf )η(x, µg,Σg) = (2π)−d|ΣfΣg|−
1
2 eα,

α = −1

2

(
(x− µf )TΣ−1

f (x− µf ) + (x− µg)TΣ−1
g (x− µg)

)
.

(14)

The general form inside the exponential is

(x− y)TC−1(x− y) = xTC−1x− 2xTC−1y+ yTC−1y.
(15)

For notation, let a = µf , A = Σf , b = µg, B = Σg

(x− a)TA−1(x− a) + (x− b)TB−1(x− b)
= xT (A−1 +B−1)x− 2xT (A−1a+B−1b) + aTA−1a

+ bTB−1b.

(16)

Completing the square from Eqn. 15, 16, we obtain
the formulation

Let C = (A−1 +B−1)−1, c = C(A−1a+B−1b),

xT (A−1 +B−1)x− 2xT (A−1a+B−1b) + aTA−1a

+ bTB−1b

= (xTC−1x− 2xTC−1c+ cTC−1c)

− cTC−1c+ aTA−1a+ bTB−1b

=
(
(x− c)TC−1(x− c)

)
− cTC−1c+ aTA−1a+ bTB−1b.

(17)



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Local Gradient Descent Methods for GMM Simplification

Evaluating the remainder terms from Eqn. 17, we get

− cTC−1c

= −aTA−1CA−1a− 2aTA−1CB−1b− bTB−1CB−1b,

aTA−1a+ bTB−1b

= aTA−1C(A−1a+B−1a) + bTB−1C(A−1b+B−1b),

− cTC−1c+ aTA−1a+ bTB−1b

= aTA−1CB−1a− 2aTA−1CB−1b+ bTA−1CB−1b

= (a− b)T (A−1CB−1)(a− b) From Eqn. 15

= (a− b)T (A+B)−1(a− b).
(18)

Substituting Eqn. 17, 18 back into Eqn. 14, we obtain
the product of Gaussians

η(x, µf ,Σf )η(x, µg,Σg)

=

(
(2π)d|C|
(2π)d|C|

) 1
2

(2π)−d|AB|− 1
2 e−

1
2 (x−c)TC−1(x−c)

e−
1
2 (a−b)T (A+B)−1(a−b)

= (2π)−
d
2 |AB|− 1

2 |C| 12 e− 1
2 (a−b)T (A+B)−1(a−b)η(x, c, C)

= (2π)−
d
2 |AC−1B|− 1

2 e−
1
2 (a−b)T (A+B)−1(a−b)η(x, c, C)

=
(
(2π)d|A+B|

)− 1
2 e−

1
2 (a−b)T (A+B)−1(a−b)η(x, c, C)

= η(a, b, A+B)η(x, c, C)

= zcη(x, c, C).

(19)

6.2. Matrix-Vector Derivatives

Lemma 6.2.1. The partial derivative of a linear func-
tion is

∂aTx

∂x
=
∂xTa

∂x
= aT ,

∂Ax

∂x
=
xTA

xT
= A.

Lemma 6.2.2. The partial derivative of a quadratic
function is

∂xTAx

∂x
=
∂xT

∂x
Ax+ xT

∂Ax

∂x
by product rule

= 2xTA by Lemma 6.2.1 for symmetric A.

Lemma 6.2.3. The partial derivative of a quadratic

function with translated x is

∂(a− x)TA(a− x)

∂x
=
∂(x− a)TA(x− a)

∂x

=
∂(x− a)T

∂x
A(x− a) + (x− a)T

∂A(x− a)

∂x

= 2(x− a)TA by Lemma 6.2.1 for symmetric A.

Lemma 6.2.4. The partial derivative of matrix deter-
minants with added A or B is

|A+B| =
∑
j

(−1)i+j(aij + bij)Mij

fixed i, matrix M is minor of matrix A+B,

∂|A+B|
∂aij

=
∂|A+B|
∂bij

= (−1)i+jMi,j is the cofactor matrix,

(A+B)−1 =
1

|A+B|
adj(A+B)

Cramer’s rule, adj(A+B) is adjoint

=
1

|A+B|

(
∂|A+B|
∂A

)T
adj(A+B) is transpose of the cofactor matrix,

∂|A+B|
∂A

=
∂|A+B|
∂B

= |A+B|(A+B)−T = |A+B|(A+B)−1

for symmetric A, B.

Lemma 6.2.5. The partial derivative of matrix in-
verses with added B is

0 = ∂I

= ∂((A+B)−1(A+B))

= ∂(A+B)−1(A+B) + (A+B)−1∂(A+B),

∂(A+B)−1 = −(A+B)−1∂(A+B)(A+B)−1,

∂cT (A+B)−1c

∂aij
= cT

∂(A+B)−1

aij
c

= −cT (A+B)−1 ∂(A+B)

∂aij
(A+B)−1c

= −cT (A+B)−1eie
T
j (A+B)−1c

= −(cT (A+B)−1ei)(e
T
j (A+B)−1c)

= −(cT (A+B)−1ei)
T (eTj (A+B)−1c)T

= −eTi ((A+B)−T ccT (A+B)−T )ej ,
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∂cT (A+B)−1c

∂A
= −(A+B)−T ccT (A+B)−T

= −(A+B)−1ccT (A+B)−1 for symmetric A, B.

6.3. Partial Derivatives of F (θ)

Lemma 6.3.1. The partial derivative of the function
η(µA, µB ,ΣA + ΣB) with respect to µA is

∂η(µA, µB ,ΣA + ΣB)

∂µA
= η(µA, µB ,ΣA + ΣB)

∂−1
2 (µA − µB)T (ΣA + ΣB)−1(µA − µB)

∂µA

= −η(µA, µB ,ΣA + ΣB)(µA − µB)T (ΣA + ΣB)−1

by Lemma 6.2.3.

Lemma 6.3.2. The partial derivative of the function
η(µA, µB ,ΣA + ΣB) with respect to ΣA is

Let g(ΣA) = ((2π)d|ΣA + ΣB |)−
1
2 ,

Let h(ΣA) = e−
1
2 (µA−µB)T (ΣA+ΣB)−1(µA−µB),

∂g(ΣA)

∂ΣA
= −1

2
(2π)

−d
2 |ΣA + ΣB |−

3
2
∂|ΣA + ΣB |

∂ΣA

= −1

2
g(ΣA)(ΣA + ΣB)−1

by Lemma 6.2.4,

∂h(ΣA)

∂ΣA
=
−h(ΣA)∂(µA − µB)T (ΣA + ΣB)−1(µA − µB)

2∂ΣA

=
1

2
h(ΣA)(ΣA + ΣB)−1

(µA − µB)(µA − µB)T (ΣA + ΣB)−1

by Lemma 6.2.5,

∂η(µA, µB ,ΣA + ΣB)

∂ΣA
=
∂g(ΣA)

∂ΣA
h(ΣA) + g(ΣA)

∂h(ΣA)

∂ΣA

= −1

2
η(µA, µB ,ΣA + ΣB)(ΣA + ΣB)−1

(I − (µA − µB)(µA − µB)T (ΣA + ΣB)−1).

Lemma 6.3.3. The partial derivatives of the objective
function F (θ) = vTf Z

fvf − 2vTf Z
fgvg + vTg Z

gvg w.r.t.
the weight vector vg is

∂F

∂vg
= −2vTf Z

fg + 2vTg Z
g

= −2(vTf Z
fg − vTg Zg) by Lemma 6.2.2.

Lemma 6.3.4. The partial derivative of the function
F (θ) w.r.t. the means µg is

∂F

∂µl,g
= −2

kf∑
i

kg∑
j

πi,fπj,g
∂η(µi,f , µj,g,Σi,f + Σj,g)

∂µl,g

+

kg∑
i

kg∑
j

πi,fπj,g
∂η(µi,g, µj,g,Σi,g + Σj,g)

∂µl,g

= 2πl,g

 kf∑
i

πi,fη(µi,f , µl,g,Σi,f + Σl,g)

(µl,g − µi,f )T (Σi,f + Σl,g)
−1

−
kg∑
j

πj,gη(µl,g, µj,g,Σl,g + Σj,g)

(µl,g − µj,g)T (Σl,g + Σj,g)
−1

)
by Lemma 6.3.1.

Lemma 6.3.5. The partial derivative of the function
F (θ) w.r.t. the covariances Σg is

∂F

∂Σl,g
= −2

kf∑
i

kg∑
j

πi,fπj,g
∂η(µi,f , µj,g,Σi,f + Σj,g)

∂Σl,g

+

kg∑
i

kg∑
j

πi,fπj,g
∂η(µi,g, µj,g,Σi,g + Σj,g)

∂Σl,g

= πl,g

( kf∑
i

πi,fη(µi,f , µl,g,Σi,f + Σl,g)(Σi,f + Σl,g)
−1

(I − (µi,f − µl,g)(µi,f − µl,g)T (Σi,f + Σl,g)
−1)

−
kg∑
j 6=l

πj,gη(µl,g, µj,g,Σl,g + Σj,g)(Σl,g + Σj,g)
−1

(I − (µl,g − µj,g)(µl,g − µj,g)T (Σl,g + Σj,g)
−1)

)
−

π2
l,gΣ

−1
l,g

2
√

(2π)d|2Σl,g|
by Lemma 6.3.2.


