# Local Gradient Descent Methods for GMM Simplification 

In prior works, the simplification problem is often posed in terms of relative entropy between the mixture models $g$ and $f$. The Kullback-Leibler(KL) divergence compares multiple distributions that may be optimized by Bregman K-means in (Nielsen et al., 2009), (Garcia et al.). A closed form of the Jensen-Rényi divergence is minimized in (Hamza \& Krim, 2003), (Wang et al., 2009). The Unscented Transform Approximation (UTA) criterion approximates the KL divergence between GMMs which can be maximized via an EMlike algorithm (Goldberger et al., 2008).
We define similarity as the $\chi^{2}$ distance between the probability distribution functions (PDFs) of mixture
models $f$ and $g$. In section 2, we derive the approximation error between mixture models based on this similarity measurement. In section 3 , we look at methods for minimizing the approximation error using gradient information. In section 4, we run the methods on both synthetic data generated by pre-defined distributions and real-world features extracted from speech data.

## 2. $\chi^{2}$ Distance

The $\chi^{2}$ distance is the approximation error or the squared difference between the PDFs of the mixture models $f$ and $g$ sampled across the entire domain (Hall \& Hicks, 2004). The integral over the squared difference is our objective function, and has the form

$$
\begin{align*}
F(\theta) & =\int_{-\infty}^{\infty}(f(x)-g(x, \theta))^{2} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} f(x)^{2}-2 f(x) g(x, \theta)+g(x, \theta)^{2} \mathrm{~d} x \tag{5}
\end{align*}
$$

Eqn. 5 leads to a computable form as the products of Gaussian components are unnormalized Gaussians (Appendix 6.1). By integrating each term over the entire domain, we are left with the weighted summation of unnormalized coefficients which are themselves Gaussians

$$
\begin{align*}
\int_{-\infty}^{\infty} f(x)^{2} \mathrm{~d} x & =\sum_{i}^{K_{f}} \sum_{j}^{K_{f}} \pi_{i, f} \pi_{j, f} z_{i, j}^{f} \\
z_{i, j}^{f} & =\eta\left(\mu_{i, f}, \mu_{j, f}, \Sigma_{i, f}+\Sigma_{j, f}\right), \\
\int_{-\infty}^{\infty}-2 f(x) g(x, \theta) \mathrm{d} x & =-2 \sum_{i}^{K_{f}} \sum_{j}^{K_{g}} \pi_{i, f} \pi_{j, g} z_{i, j}^{f g} \\
z_{i, j}^{f g} & =\eta\left(\mu_{i, f}, \mu_{j, g}, \Sigma_{i, f}+\Sigma_{j, g}\right), \\
\int_{-\infty}^{\infty} g(x)^{2} \mathrm{~d} x & =\sum_{i}^{K_{g}} \sum_{j}^{K_{g}} \pi_{i, g} \pi_{j, g} z_{i, j}^{g} \\
z_{i, j}^{g} & =\eta\left(\mu_{i, g}, \mu_{j, g}, \Sigma_{i, g}+\Sigma_{j, g}\right) \tag{6}
\end{align*}
$$

We may simplify the notation by writing in matrixvector form. The set of weights for mixtures $f$ and $g$ are treated as vectors. The unnormalized coefficients populate the matrices $Z$. Note that the first term remains constant as it consist only of elements from mix-
ture $f$. The objective function is equivalent to

$$
\begin{align*}
F(\theta) & =v_{f}^{T} Z^{f} v_{f}-2 v_{f}^{T} Z^{f g} v_{g}+v_{g}^{T} Z^{g} v_{g}, \\
\sum_{k=1}^{K_{g}} v_{k, g} & =1, \quad v_{k, g} \geq 0, \\
v_{f} & =\left[\pi_{1, f}, \ldots, \pi_{K_{f}, f}\right]^{T}, \quad v_{g}=\left[\pi_{1, g}, \ldots, \pi_{K_{g}, g}\right]^{T}, \\
Z_{i j}^{f} & =\eta\left(\mu_{i, f}, \mu_{j, f}, \Sigma_{i, f}+\Sigma_{j, f}\right), \\
Z_{i j}^{f g} & =\eta\left(\mu_{i, f}, \mu_{j, g}, \Sigma_{i, f}+\Sigma_{j, g}\right), \\
Z_{i j}^{g} & =\eta\left(\mu_{i, g}, \mu_{j, g}, \Sigma_{i, g}+\Sigma_{j, g}\right) . \tag{7}
\end{align*}
$$

## 3. Minimizing $F(\theta)$

Directly minimizing the approximation error $F(\theta)$ in Eqn. 7 leads to a non-linear system that is difficult to solve. However, a first-order iterative method such as gradient descent is possible. Recall that gradient descent finds a local minimum by moving in the negative gradient direction

$$
\begin{equation*}
\theta^{t+1}=\theta^{t}-\gamma \nabla F(\theta) \tag{8}
\end{equation*}
$$

To compute gradients, we differentiate $F(\theta)$ w.r.t. each parameter. For convenience, we use vector notation to represent the entire set of weight parameters $v_{g}$ in the mixture model. For a component $l$, its mean and covariance parameters are represented by the vector $\mu_{l, g}$ and the symmetric positive definite matrix $\Sigma_{l, g}$. Note that $F(\theta)$ is quadratic in terms of the weight parameters $v_{g}$ and so its partial derivative is linear. Thus, we can normalize the weights to sum to 1 at the end of each step without changing the sign of the gradient. The partial derivatives (Appendix 6.3) are

$$
\begin{align*}
\frac{\partial F}{\partial v_{g}} & =-2\left(v_{f}^{T} Z^{f g}-v_{g}^{T} Z^{g}\right), \\
\frac{\partial F}{\partial \mu_{l, g}} & =\pi_{l, g}\left(\sum_{i}^{k_{f}} \pi_{i, f} \eta_{i, l} \mu_{l, i}^{g f} \Sigma_{i, l}^{f g}-\sum_{j}^{k_{g}} \pi_{j, g} \eta_{l, j} \mu_{l, j}^{g g} \Sigma_{l, j}^{g g}\right), \\
\frac{\partial F}{\partial \Sigma_{l, g}} & =\pi_{l, g}\left(\sum_{i}^{k_{f}} \pi_{i, f} \eta_{i, l} \Sigma_{i, l}^{f g}\left(I-\left(\mu_{i, l}^{f g}\right)^{T} \mu_{i, l}^{f g} \Sigma_{i, l}^{f g}\right)\right. \\
-\sum_{j \neq l}^{k_{g}} & \left.\pi_{j, g} \eta_{l, j} \Sigma_{l, j}^{g g}\left(I-\left(\mu_{l, j}^{g g}\right)^{T} \mu_{l, j}^{g g} \Sigma_{l, j}^{g g}\right)\right)-\frac{\pi_{l, g}^{2} \Sigma_{l, g}^{-1}}{2 \sqrt{(2 \pi)^{d}\left|2 \Sigma_{l, g}\right|}}, \\
\mu_{l, i}^{g f} & =\left(\mu_{l, g}-\mu_{i, f}\right)^{T}, \quad \Sigma_{i, l}^{f g}=\left(\Sigma_{i, f}+\Sigma_{l, g}\right)^{-1}, \\
\eta_{i, l} & =\eta\left(\mu_{i, f}, \mu_{l, g}, \Sigma_{i, f}+\Sigma_{l, g}\right), \\
\eta_{l, j} & =\eta\left(\mu_{l, g}, \mu_{j, g}, \Sigma_{l, g}+\Sigma_{j, g}\right) . \tag{9}
\end{align*}
$$

To find a suitable $\gamma$ coefficient, we minimize the functional $F(\theta+\gamma v)$ where $v$ is the line search direction. The first derivative with respect to $\gamma$ can be approximated by a truncated Taylor expansion

$$
\begin{align*}
F(\theta+\gamma v) & \approx F(\theta)+\gamma \frac{\partial}{\partial \theta} F(\theta)^{T} v+\frac{\gamma^{2}}{2} \frac{\partial^{2}}{\partial \theta^{2}} F(\theta)^{T} v \\
\frac{\partial}{\partial \gamma} F(\theta+\gamma v) & \approx \frac{\partial}{\partial \theta} F(\theta)^{T} v+\gamma \frac{\partial^{2}}{\partial \theta^{2}} F(\theta)^{T} v \tag{10}
\end{align*}
$$

Explicitly computing the second derivative Hessian matrix is expensive. Instead, we use a secant method for approximating the second derivative from a general line search step in non-linear conjugate gradients optimization (Shewchuk, 1994). Setting the first partial derivative to 0 , we solve for the $\gamma$ coefficient

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \theta^{2}} F(\theta) & \approx \frac{\frac{\partial F(\theta+\sigma v)}{\partial \theta}-\frac{\partial F(\theta)}{\partial \theta}}{\sigma} \quad \text { for small } \sigma \\
0 & =\frac{\partial}{\partial \theta} F(\theta)^{T} v+\gamma \frac{\partial^{2}}{\partial \theta^{2}} F(\theta)^{T} v \\
\gamma & =-\sigma \frac{\nabla F(\theta)^{T} v}{\nabla F(\theta+\sigma v)-\nabla F(\theta)^{T} v}, \quad v=\nabla F(\theta)
\end{aligned}
$$

The step size $\sigma$ is initially an arbitrarily small value and is set to the previous $|\gamma|$ in subsequent iterations. In practice, this secant approximation for line searching is only used during the first few iterations to quickly move towards a local minima. We revert back to normal gradient descent with a fixed $\gamma=10^{-(d / 3)}$ for $v_{g}, \mu_{g}$, and $\gamma=10^{-(d / 3)-1}$ for $\Sigma_{g}$ parameters.
It is also possible to perform local gradient descent on similar components in order to decrease run-time but with greater approximation error. The components of mixture model $f$ into $K_{g}$ can be partitioned into disjoint sets and local fitted for each component in mixture model $g$ (Zhang \& Kwok, 2007). We consider a similar approach that modifies the well known K-means algorithm to run over mixture model $g$ 's parameter space. This K-means algorithm alternates between an assignment followed by one or more update steps.

1. Assignment step: Assign each of the $K_{f}$ components in the mixture model $f$ to the most similar components in the mixture model $g$.

$$
\begin{align*}
S_{i}^{(t)} & =\left\{k_{j, f}: D\left(k_{j, f}, k_{i, g}^{(t)}\right) \leq D\left(k_{j, f}, k_{i^{*}, g}^{(t)}\right)\right.  \tag{11}\\
& \text { for all } i^{*}=1, \ldots, K_{g}
\end{align*}
$$

The distance $D$ between mixture components may take on alternative forms such as the average Kullback-Leibler, Bhattacharyya, and generalized

Rényi divergences. In this paper, we use the similar $\chi^{2}$ distance formulation between pair-wise components.

$$
\begin{align*}
D\left(k_{j, f}, k_{i, g}^{(t)}\right) & =\int_{-\infty}^{\infty}\left(k_{j, f}-k_{i, g}^{(t)}\right)^{2} \mathrm{~d} x \\
& =\pi_{j, f}^{2} z_{j, j}^{f}-2 \pi_{j, f} \pi_{i, g} z_{j, i}^{f g}+\pi_{i, g}^{2} z_{i, i}^{g} \tag{12}
\end{align*}
$$

2. Update step: Modify the components of mixture model $g$ by performing local gradient descent.

$$
\begin{gather*}
\theta_{i}^{t}=\theta_{i}^{t-1}-\gamma \nabla F_{i}^{*}(\theta) \\
\nabla F_{i}^{*}(\theta)=\nabla F\left(\theta, \pi_{f}^{i}, \pi_{g}^{i}\right),  \tag{13}\\
\pi_{j, f}^{i}= \begin{cases}0, & j \notin S_{i}^{(t)} \\
\pi_{j, f}, & j \in S_{i}^{(t)}\end{cases} \\
\pi_{j, g}= \begin{cases}0, & j \neq i \\
\pi_{j, g}, & j=i\end{cases}
\end{gather*}
$$

The gradient $\nabla F_{i}^{*}(\theta)$ is now unique as each component $k_{i, g}$ is mutually independent and can only see the assigned components $S_{i}^{(t)}$ in the mixture model $f$.

The algorithm terminates when no new assignments are made and the local components have converged.

## 4. Experiments

To obtain the source mixture model $f$, we perform EM on both synthetic and real-world data. In the synthetic case, we generate a random set of $\frac{K_{f}}{2}$ weighted Gaussian distributions and then randomly sample $N$ points from the distributions. This suggests that running EM on the source data for $K_{f}$ cluster will produce an overfitted model that we can simplify. For the initial conditions of mixture model $g$, we suggest the $K_{g}$ highest weighted components from mixture model $f$. This allows both gradient descent and K-means to start with a configuration that is likely to be close to the global minimum.

In Fig. 1, the local updates for K-means may cause the the assignment step to oscillate between two or more components. Gradient descent achieves the expected smaller approximation error than the K-means method. In Fig. 2 for higher dimensional data where the GMM components are more separated, the approximation error is less pronounced. The K-means routine performs 4 update steps for every assignment step and terminates 3 times faster than the gradient descent method.


Figure 1. Comparison of gradient descent and K-means on a 10 component mixture model simplified to 5 . Original GMM generated from 3000 points sampled across 5 normal distributions of equal diagonal covariance, random mean, random weight, 2 dimensions.

For non-synthetic inputs, we work with speech data obtained from the NIST Speaker Recognition Evaluation (SRE) 2008 collection. The raw data has been transformed into 38 dimensional Mel-frequency cepstrum coefficients, extracted from 30 ms frames with overlaps. These coefficients or speech features represent the short-term power spectrum of a sound and are shown to approximate the human auditory system's response (Ganchev et al., 2005). In speaker recognition, a common first step is to learn a Universal Background Model (UBM) that represents general, personindependent feature characteristics (Reynolds \& Rose, 1995). This UBM is identical to a GMM that is trained over a large set of speaker features. In Fig. 3, the initial components have closely related means but with varying covariances. The K-means method oscillates wildly during certain assignment steps. In the cases of poor component assignment, performing local gradient descent may actually increase the approximation error.

## 5. Conclusions

We have shown that the analytical form of the difference between two PDFs of Gaussian mixture models can be directly used for model simplification. The partial derivatives derived from the analytical form can be applied to such techniques as gradient descent and


Figure 2. Comparison of gradient descent and K-means on a 30 component mixture model simplified to 15 . Original GMM generated from 10000 points sampled across 15 normal distributions of equal diagonal covariance, random mean, random weight, 10 dimensions. Graphs show a two dimensional slice of the GMMs and data.

K-means for minimization. The experimental results for synthetic data show that both techniques converge to local minimums for components that are well separated along the means. The experimental results for sound data where the components have locally close means are less conclusive for the K-means approach.

## References

Dempster, A.P., Laird, N.M., and Rubin, D.B. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B, 39:1-38, 1977.

Ganchev, T., Fakotakis, N., and Kokkinakis, G. Comparative evaluation of various mfcc implementations on the speaker verification task. In 10th International Conference on Speech and Computer (SPECOM 2005), volume 1, pp. 191-194, 2005.

Garcia, V., Nielsen, F., and Nock, R. Hierarchical gaussian mixture models. In ICASSP 2010.

Goldberger, J., Greenspan, H., and Dreyfuss, J. Simplifying mixture models using the unscented transform. IEEE Transactions Pattern Analysis Machine Intelligence, 30:1496-1502, 2008.

Hall, P. M. and Hicks, Y. A method to add gaussian


Figure 3. Comparison of gradient descent and K-means on a 10 component mixture model simplified to 5 . Original GMM generated from NIST SRE 2008 data, 146556 points across the first two dimensions.
mixture models. Technical report, Department of Computer Science, University of Bath, 2004.

Hamza, A.B. and Krim, H. Jensen-renyi divergence measure: theoretical and computational perspectives. In IEEE International Symposium on Information, pp. 257-257, 2003.

Nielsen, F., Garcia, V., and Nock, R. Simplifying gaussian mixture models via entropic quantization. In 17 th European Conference on Signal Processing (EUSIPCO), 2009.

Reynolds, D. and Rose, R. Robust textindependent speaker identification using gaussian mixture speaker models. IEEE Trans. Speech Audio Processing, 3:72-83, 1995.

Shewchuk, J. R. An introduction to the conjugate gradient method without the agonizing pain. Technical report, chool of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994.

Wang, F., Syeda-Mahmood, T.F., Vemuri, B.C., Beymer, D., and Rangarajan, A. Closed-form jensen-renyi divergence for mixture of gaussians and applications to group-wise shape registration. In International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 648-655, 2009.

Zhang, K. and Kwok, J. T. Simplifying mixture models through function approximation. Advances in Neural Information Processing Systems, 17:15771584, 2007.

## 6. Appendix

### 6.1. Product of Multivariate-Gaussians

Theorem 6.1.1. The product of two Gaussian $\eta\left(x, \mu_{f}, \Sigma_{f}\right) \eta\left(x, \mu_{g}, \Sigma_{g}\right)$ given the same random variable $x$ is an unnormalized Gaussian. We assume that the covariance matrices are invertible and symmetric. A constructive proof is presented below.

The product of Gaussians is derived from
$\eta\left(x, \mu_{f}, \Sigma_{f}\right) \eta\left(x, \mu_{g}, \Sigma_{g}\right)=(2 \pi)^{-d}\left|\Sigma_{f} \Sigma_{g}\right|^{-\frac{1}{2}} e^{\alpha}$,
$\alpha=-\frac{1}{2}\left(\left(x-\mu_{f}\right)^{T} \Sigma_{f}^{-1}\left(x-\mu_{f}\right)+\left(x-\mu_{g}\right)^{T} \Sigma_{g}^{-1}\left(x-\mu_{g}\right)\right)$.

The general form inside the exponential is
$(x-y)^{T} C^{-1}(x-y)=x^{T} C^{-1} x-2 x^{T} C^{-1} y+y^{T} C^{-1} y$.
For notation, let $a=\mu_{f}, A=\Sigma_{f}, b=\mu_{g}, B=\Sigma_{g}$

$$
\begin{align*}
& (x-a)^{T} A^{-1}(x-a)+(x-b)^{T} B^{-1}(x-b) \\
& =x^{T}\left(A^{-1}+B^{-1}\right) x-2 x^{T}\left(A^{-1} a+B^{-1} b\right)+a^{T} A^{-1} a \\
& +b^{T} B^{-1} b \tag{16}
\end{align*}
$$

Completing the square from Eqn. 15, 16, we obtain the formulation

Let $C=\left(A^{-1}+B^{-1}\right)^{-1}, \quad c=C\left(A^{-1} a+B^{-1} b\right)$,
$x^{T}\left(A^{-1}+B^{-1}\right) x-2 x^{T}\left(A^{-1} a+B^{-1} b\right)+a^{T} A^{-1} a$
$+b^{T} B^{-1} b$
$=\left(x^{T} C^{-1} x-2 x^{T} C^{-1} c+c^{T} C^{-1} c\right)$
$-c^{T} C^{-1} c+a^{T} A^{-1} a+b^{T} B^{-1} b$
$=\left((x-c)^{T} C^{-1}(x-c)\right)-c^{T} C^{-1} c+a^{T} A^{-1} a+b^{T} B^{-1} b$.

Evaluating the remainder terms from Eqn. 17, we get

$$
\begin{align*}
& -c^{T} C^{-1} c \\
& =-a^{T} A^{-1} C A^{-1} a-2 a^{T} A^{-1} C B^{-1} b-b^{T} B^{-1} C B^{-1} b, \\
& a^{T} A^{-1} a+b^{T} B^{-1} b \\
& =a^{T} A^{-1} C\left(A^{-1} a+B^{-1} a\right)+b^{T} B^{-1} C\left(A^{-1} b+B^{-1} b\right), \\
& -c^{T} C^{-1} c+a^{T} A^{-1} a+b^{T} B^{-1} b \\
& =a^{T} A^{-1} C B^{-1} a-2 a^{T} A^{-1} C B^{-1} b+b^{T} A^{-1} C B^{-1} b \\
& =(a-b)^{T}\left(A^{-1} C B^{-1}\right)(a-b) \quad \text { From Eqn. } 15 \\
& =(a-b)^{T}(A+B)^{-1}(a-b) . \tag{18}
\end{align*}
$$

Substituting Eqn. 17, 18 back into Eqn. 14, we obtain the product of Gaussians

$$
\begin{align*}
& \eta\left(x, \mu_{f}, \Sigma_{f}\right) \eta\left(x, \mu_{g}, \Sigma_{g}\right) \\
& =\left(\frac{(2 \pi)^{d}|C|}{(2 \pi)^{d}|C|}\right)^{\frac{1}{2}}(2 \pi)^{-d}|A B|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-c)^{T} C^{-1}(x-c)} \\
& e^{-\frac{1}{2}(a-b)^{T}(A+B)^{-1}(a-b)} \\
& =(2 \pi)^{-\frac{d}{2}}|A B|^{-\frac{1}{2}}|C|^{\frac{1}{2}} e^{-\frac{1}{2}(a-b)^{T}(A+B)^{-1}(a-b)} \eta(x, c, C) \\
& =(2 \pi)^{-\frac{d}{2}}\left|A C^{-1} B\right|^{-\frac{1}{2}} e^{-\frac{1}{2}(a-b)^{T}(A+B)^{-1}(a-b)} \eta(x, c, C) \\
& =\left((2 \pi)^{d}|A+B|\right)^{-\frac{1}{2}} e^{-\frac{1}{2}(a-b)^{T}(A+B)^{-1}(a-b)} \eta(x, c, C) \\
& =\eta(a, b, A+B) \eta(x, c, C) \\
& =z_{c} \eta(x, c, C) . \tag{19}
\end{align*}
$$

### 6.2. Matrix-Vector Derivatives

Lemma 6.2.1. The partial derivative of a linear function is

$$
\begin{aligned}
\frac{\partial a^{T} x}{\partial x} & =\frac{\partial x^{T} a}{\partial x}=a^{T} \\
\frac{\partial A x}{\partial x} & =\frac{x^{T} A}{x^{T}}=A
\end{aligned}
$$

Lemma 6.2.2. The partial derivative of a quadratic function is

$$
\begin{aligned}
\frac{\partial x^{T} A x}{\partial x} & =\frac{\partial x^{T}}{\partial x} A x+x^{T} \frac{\partial A x}{\partial x} \quad \text { by product rule } \\
& =2 x^{T} A \quad \text { by Lemma 6.2.1 for symmetric } A
\end{aligned}
$$

Lemma 6.2.3. The partial derivative of a quadratic
function with translated $x$ is

$$
\begin{aligned}
& \frac{\partial(a-x)^{T} A(a-x)}{\partial x}=\frac{\partial(x-a)^{T} A(x-a)}{\partial x} \\
& =\frac{\partial(x-a)^{T}}{\partial x} A(x-a)+(x-a)^{T} \frac{\partial A(x-a)}{\partial x} \\
& =2(x-a)^{T} A \quad \text { by Lemma 6.2.1 for symmetric } A .
\end{aligned}
$$

Lemma 6.2.4. The partial derivative of matrix determinants with added $A$ or $B$ is

$$
|A+B|=\sum_{j}(-1)^{i+j}\left(a_{i j}+b_{i j}\right) M_{i j}
$$

fixed $i$, matrix $M$ is minor of matrix $A+B$,

$$
\begin{aligned}
\frac{\partial|A+B|}{\partial a_{i j}} & =\frac{\partial|A+B|}{\partial b_{i j}} \\
& =(-1)^{i+j} M_{i, j} \quad \text { is the cofactor matrix }
\end{aligned}
$$

$$
\begin{aligned}
(A+B)^{-1} & =\frac{1}{|A+B|} \text { adj }(A+B) \\
& \text { Cramer's rule, adj }(A+B) \text { is adjoint } \\
& =\frac{1}{|A+B|}\left(\frac{\partial|A+B|}{\partial A}\right)^{T} \\
& \text { adj }(A+B) \text { is transpose of the cofactor matrix, } \\
\frac{\partial|A+B|}{\partial A}= & \frac{\partial|A+B|}{\partial B} \\
& =|A+B|(A+B)^{-T}=|A+B|(A+B)^{-1}
\end{aligned}
$$

$$
\text { for symmetric } A, B \text {. }
$$

Lemma 6.2.5. The partial derivative of matrix inverses with added $B$ is

$$
\begin{gathered}
0=\partial I \\
=\partial\left((A+B)^{-1}(A+B)\right) \\
=\partial(A+B)^{-1}(A+B)+(A+B)^{-1} \partial(A+B), \\
\partial(A+B)^{-1}=-(A+B)^{-1} \partial(A+B)(A+B)^{-1}, \\
\frac{\partial c^{T}(A+B)^{-1} c}{\partial a_{i j}}=c^{T} \frac{\partial(A+B)^{-1}}{a_{i j}} c \\
=-c^{T}(A+B)^{-1} \frac{\partial(A+B)}{\partial a_{i j}}(A+B)^{-1} c \\
=-c^{T}(A+B)^{-1} e_{i} e_{j}^{T}(A+B)^{-1} c \\
=-\left(c^{T}(A+B)^{-1} e_{i}\right)\left(e_{j}^{T}(A+B)^{-1} c\right) \\
=-\left(c^{T}(A+B)^{-1} e_{i}\right)^{T}\left(e_{j}^{T}(A+B)^{-1} c\right)^{T} \\
=-e_{i}^{T}\left((A+B)^{-T} c c^{T}(A+B)^{-T}\right) e_{j}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial c^{T}(A+B)^{-1} c}{\partial A}=-(A+B)^{-T} c c^{T}(A+B)^{-T} \\
& =-(A+B)^{-1} c c^{T}(A+B)^{-1} \text { for symmetric } A, B
\end{aligned}
$$

### 6.3. Partial Derivatives of $F(\theta)$

Lemma 6.3.1. The partial derivative of the function $\eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)$ with respect to $\mu_{A}$ is

$$
\begin{aligned}
& \frac{\partial \eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)}{\partial \mu_{A}}=\eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right) \\
& \frac{\partial \frac{-1}{2}\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}\left(\mu_{A}-\mu_{B}\right)}{\partial \mu_{A}} \\
& =-\eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}
\end{aligned}
$$

by Lemma 6.2.3.
Lemma 6.3.2. The partial derivative of the function $\eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)$ with respect to $\Sigma_{A}$ is

$$
\begin{aligned}
& \text { Let } g\left(\Sigma_{A}\right)=\left((2 \pi)^{d}\left|\Sigma_{A}+\Sigma_{B}\right|\right)^{-\frac{1}{2}} \\
& \text { Let } h\left(\Sigma_{A}\right)=e^{-\frac{1}{2}\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}\left(\mu_{A}-\mu_{B}\right)}, \\
& \begin{aligned}
\frac{\partial g\left(\Sigma_{A}\right)}{\partial \Sigma_{A}}= & -\frac{1}{2}(2 \pi)^{\frac{-d}{2}}\left|\Sigma_{A}+\Sigma_{B}\right|^{-\frac{3}{2}} \frac{\partial\left|\Sigma_{A}+\Sigma_{B}\right|}{\partial \Sigma_{A}} \\
& =-\frac{1}{2} g\left(\Sigma_{A}\right)\left(\Sigma_{A}+\Sigma_{B}\right)^{-1} \\
\text { by } & \text { Lemma 6.2.4, }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial h\left(\Sigma_{A}\right)}{\partial \Sigma_{A}} & =\frac{-h\left(\Sigma_{A}\right) \partial\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}\left(\mu_{A}-\mu_{B}\right)}{2 \partial \Sigma_{A}} \\
& =\frac{1}{2} h\left(\Sigma_{A}\right)\left(\Sigma_{A}+\Sigma_{B}\right)^{-1} \\
& \left(\mu_{A}-\mu_{B}\right)\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1} \\
& \text { by Lemma 6.2.5, }
\end{aligned}
$$

$\frac{\partial \eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)}{\partial \Sigma_{A}}=\frac{\partial g\left(\Sigma_{A}\right)}{\partial \Sigma_{A}} h\left(\Sigma_{A}\right)+g\left(\Sigma_{A}\right) \frac{\partial h\left(\Sigma_{A}\right)}{\partial \Sigma_{A}}$
$=-\frac{1}{2} \eta\left(\mu_{A}, \mu_{B}, \Sigma_{A}+\Sigma_{B}\right)\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}$
$\left(I-\left(\mu_{A}-\mu_{B}\right)\left(\mu_{A}-\mu_{B}\right)^{T}\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}\right)$.
Lemma 6.3.3. The partial derivatives of the objective function $F(\theta)=v_{f}^{T} Z^{f} v_{f}-2 v_{f}^{T} Z^{f g} v_{g}+v_{g}^{T} Z^{g} v_{g}$ w.r.t. the weight vector $v_{g}$ is

$$
\begin{aligned}
\frac{\partial F}{\partial v_{g}} & =-2 v_{f}^{T} Z^{f g}+2 v_{g}^{T} Z^{g} \\
& =-2\left(v_{f}^{T} Z^{f g}-v_{g}^{T} Z^{g}\right) \quad \text { by Lemma 6.2.2. }
\end{aligned}
$$

Lemma 6.3.4. The partial derivative of the function $F(\theta)$ w.r.t. the means $\mu_{g}$ is

$$
\begin{aligned}
\frac{\partial F}{\partial \mu_{l, g}} & =-2 \sum_{i}^{k_{f}} \sum_{j}^{k_{g}} \pi_{i, f} \pi_{j, g} \frac{\partial \eta\left(\mu_{i, f}, \mu_{j, g}, \Sigma_{i, f}+\Sigma_{j, g}\right)}{\partial \mu_{l, g}} \\
& +\sum_{i}^{k_{g}} \sum_{j}^{k_{g}} \pi_{i, f} \pi_{j, g} \frac{\partial \eta\left(\mu_{i, g}, \mu_{j, g}, \Sigma_{i, g}+\Sigma_{j, g}\right)}{\partial \mu_{l, g}} \\
& =2 \pi_{l, g}\left(\sum_{i}^{k_{f}} \pi_{i, f} \eta\left(\mu_{i, f}, \mu_{l, g}, \Sigma_{i, f}+\Sigma_{l, g}\right)\right. \\
& \left(\mu_{l, g}-\mu_{i, f}\right)^{T}\left(\Sigma_{i, f}+\Sigma_{l, g}\right)^{-1} \\
& -\sum_{j}^{k_{g}} \pi_{j, g} \eta\left(\mu_{l, g}, \mu_{j, g}, \Sigma_{l, g}+\Sigma_{j, g}\right) \\
& \left.\left(\mu_{l, g}-\mu_{j, g}\right)^{T}\left(\Sigma_{l, g}+\Sigma_{j, g}\right)^{-1}\right) \quad \text { by Lemma 6.3.1. }
\end{aligned}
$$

Lemma 6.3.5. The partial derivative of the function $F(\theta)$ w.r.t. the covariances $\Sigma_{g}$ is

$$
\begin{aligned}
\frac{\partial F}{\partial \Sigma_{l, g}} & =-2 \sum_{i}^{k_{f}} \sum_{j}^{k_{g}} \pi_{i, f} \pi_{j, g} \frac{\partial \eta\left(\mu_{i, f}, \mu_{j, g}, \Sigma_{i, f}+\Sigma_{j, g}\right)}{\partial \Sigma_{l, g}} \\
& +\sum_{i}^{k_{g}} \sum_{j}^{k_{g}} \pi_{i, f} \pi_{j, g} \frac{\partial \eta\left(\mu_{i, g}, \mu_{j, g}, \Sigma_{i, g}+\Sigma_{j, g}\right)}{\partial \Sigma_{l, g}} \\
& =\pi_{l, g}\left(\sum_{i}^{k_{f}} \pi_{i, f} \eta\left(\mu_{i, f}, \mu_{l, g}, \Sigma_{i, f}+\Sigma_{l, g}\right)\left(\Sigma_{i, f}+\Sigma_{l, g}\right)^{-1}\right. \\
& \left(I-\left(\mu_{i, f}-\mu_{l, g}\right)\left(\mu_{i, f}-\mu_{l, g}\right)^{T}\left(\Sigma_{i, f}+\Sigma_{l, g}\right)^{-1}\right) \\
& -\sum_{j \neq l}^{k_{g}} \pi_{j, g} \eta\left(\mu_{l, g}, \mu_{j, g}, \Sigma_{l, g}+\Sigma_{j, g}\right)\left(\Sigma_{l, g}+\Sigma_{j, g}\right)^{-1} \\
& \left.\left(I-\left(\mu_{l, g}-\mu_{j, g}\right)\left(\mu_{l, g}-\mu_{j, g}\right)^{T}\left(\Sigma_{l, g}+\Sigma_{j, g}\right)^{-1}\right)\right) \\
& -\frac{\pi_{l, g}^{2} \Sigma_{l, g}^{-1}}{2 \sqrt{(2 \pi)^{d}\left|2 \Sigma_{l, g}\right|}} \text { by Lemma 6.3.2. }
\end{aligned}
$$

