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Introduction 
 

Incomplete factorizations of sparse symmetric positive definite (SSPD) matrices have been used to 

generate preconditioners for various iterative solvers. These solvers generally use preconditioners 

derived from the matrix system, , in order to reduce the total number of iterations until 

convergence. In this report, we investigate the findings of ref. [1] on their method for computing 

preconditioners from SSPD matrix . In particular, we focus on their first supernodal Cholesky 

factorization algorithm designed for matrices with naturally occurring block structures.   
 

 
Figure 1: Incomplete Cholesky factorization with static supernodes algorithm [1] 

The supernodal incomplete Cholesky algorithm for preconditioner generation is motivated by how the 

Cholesky factorization accesses column nodes, the overhead from indirect addressing of SSPD matrix , 

and the memory advantages obtained from level 3 BLAS routines with dense blocking. We introduce 

this motivation and explain some priors such as supernodal elimination trees [2] in the background 

section. In Matlab, we implement the above algorithm along with several comparable to illustrate a 

proof of correctness and to support the motivating claims. Partial results are shown in the methods 

section. Last, we experiment with the dropping strategies used in the incomplete factorization for both 

randomized and structured matrices. Our findings and the analysis are in the experiments section. 
 

Background 
 

Recall that the Cholesky factorization is a special case of the LU decomposition for symmetric positive 

definite (SPD) matrices where we factor  for lower-triangular matrix .  
 

 

 

Figure 2: Pseudo-code for right-looking Cholesky factorization where matrix L is initially the lower triangle portion 

of matrix A [3] 



For SSPD matrix , we see that the column updates in L depend on if coefficients  from previously 

computed columns are non-zero. In the sparse case where most elements are zero, it is advantageous to 

create a dependency graph for matrix columns. A specific case of this dependency graph is the 

elimination tree where nodes represent columns and edges represent a parent/child dependency between 

two columns. i.e. a child node is a column that must be fully updated before the parent node or column 

can be updated.  
 

 

  is the set of non-zero pattern (index) of columns j below the 

diagonal. 

  is the set of non-zero pattern (index) of columns j below and 

including the diagonal. 

  is the smallest element of  

  defines the parent function in the elimination tree 

Figure 3: Symbolic factorization via elimination tree
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Generating the elimination tree is done in the symbolic factorization phase so that a post-order traversal 

of the elimination tree in a numerical factorization phase gives the correct ordering of columns to 

update. Also,  indicates the row indices in column j that will be updated and is indicative of potential 

fill-ins in the final factorization L.  

 

For the numerical factorization phase, a left-looking Cholesky factorization algorithm is performed 

during the post-order traversal of the elimination tree. From the row indices in , we can form a dense 

sub-column j and update it by searching leftwards for columns that have a non-zero  element. A more 

efficient method reuses the elimination tree to search for nodes in the sub-tree of j instead.  

 

 
 

Figure 4: Level 1 BLAS updates (poor cache efficiency) for left-looking Cholesky columns [2] 

The supernodal symbolic factorization generalizes the single column structure of the elimination tree. 

Rather than tracking a single column per node, a supernode may contain multiple adjacent columns that 

share a similar non-zero pattern structure. The first constraint is that adjacent columns in a supernode 

must first be parent nodes from the single elimination tree. A second constraint is an overlap criteria 

which defines a percentage threshold for the number of common non-zero row indices shared between 

adjacent columns. We construct the supernodal elimination tree by merging sub-trees from the original 

elimination tree with respect to the above constraints. 

 

                                                           
1
 Creative Commons Attribution-ShareAlike License 



In the supernodal numerical factorization phase, a similar left-looking Cholesky factorization algorithm 

is performed during the post-order traversal of the supernodal elimination tree. We form dense column 

blocks and update it by searching leftwards or down the supernodal sub-tree for columns that have a 

non-zero  where j is one of the column index in the current supernode. 

 

 
 

Figure 5: Level 3 BLAS updates (superior cache efficiency) for left-looking Cholesky supernodes [2] 

Methods 
 

Adapting the supernodal Cholesky factorization algorithm to an incomplete factorization in the static 

blocking case is done by employing a dropping strategy for fill-in elements during numerical 

factorization. In ref. [1], the threshold τ and γ are used to represent a drop threshold and a target number 

of rows per supernode. The drop score for each row is computed once a supernode is fully updated. If 

the drop score falls below τ, then the row within the supernode is zeroed or removed. If the number of 

rows remaining is greater than γ times the number of initial non-zero rows in the supernode prior to any 

updating, then a less restrictive drop threshold is computed. 

 

 

 
Figure 6: A drop score (top) is computed for each row i where k = leftmost column index of supernode I, m = number 

of columns.  In the second drop threshold (bottom), dmax = maximum drop score <= 1, dmin =minimum drop score >= τ 

For the Matlab implementation, we wrote both the symbolic and numerical factorization steps for the 

single elimination tree and supernodal algorithms from scratch (No open source code available before 

this). To demonstrate proof of correctness, we generate a random 500x500 SSPD matrix  for input. For 

the direct Cholesky factorization, we use Matlab’s chol command as a base case.  For incomplete 

Cholesky, we use Matlab’s inf-cholinc for a base-case. The residual norm2(A-LL
T
) is used to determine 

accuracy.  

 
Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)) ); 

etree_cholsolve_test(A, 500, .1, 1) 

sn_cholsolve_test(A, 500, .1, .9, 1e-7, 3, 1) 



 

For direct factorizations, we test the following: 

 Built-in matlab chol 

 Naïve left-looking Cholesky 

 Single elimination tree Cholesky 

 Supernodal direct Cholesky 

 

For incomplete factorizations, we test the following: 

 Built-in matlab cholinc with inf as drop parameter (no fill-ins, handles diagonal) 

 Supernodal incomplete Cholesky with decreasing τ and fixed γ 

 
Method Residual norm2(A-LL

T
)  

chol 7.8076e-016 

cholesky_naive 1.5585e-015 

etree_cholsolve direct 1.5585e-015 

sn_cholsolve direct 6.8895e-016 

  

inf-cholinc 0.5557 

sn_cholsolve incomplete (τ = 1e-1, γ = 3) 0.5447 

sn_cholsolve incomplete (τ = 1e-3, γ = 3) 0.0226 

sn_cholsolve incomplete (τ = 1e-5, γ = 3) 1.3270e-004 

sn_cholsolve incomplete (τ = 1e-7, γ = 3) 8.9588e-007 

Table 1: Residuals of computed factors of A from various implemented algorithms 

 

  

  

Figure 7: Non-zero pattern in lower triangle of random 500x500 SSPD matrix A (top left), direct factorization L (top 

right), incomplete factorization τ = 1e-3, γ = 3 (bottom left), incomplete factorization τ = 1e-5, γ = 3 (bottom right) 



 

 

From the direct factorization results, we see that the naïve and single elimination tree Cholesky 

algorithms both produced a comparable factorizations with near accuracy to chol. For the supernodal 

direct Cholesky, it obtained an even more accurate factorization than chol.  

 

From the incomplete factorization results, we see that as the dropping tolerance decreases, the 

factorization from the supernodal Cholesky algorithm converges to the direct factorization. This can also 

be seen in the figure of non-zero elements above. 

 

Experiments 
 

The first experiment is done with the same random 500x500 SSPD matrix. We give a run-time analysis 

of the symbolic and numerical factorization phases for the various direct algorithms implemented. This 

is to show improving runtime performances as we make better use of the sparsity structure.  

 

We see that a naïve left-looking Cholesky implementation, which made no use of sparsity and non-zero 

patterns, completes the factorization with the longest time. Next, a single elimination tree Cholesky 

factorization that makes no use of dense columns during the numerical factorization step shows that the 

elimination tree does reduce the search time for column updating. The algorithm is expanded to include 

dense column updates during the numerical factorization phase. The results indicate that dense blocking, 

even along a single dimension, improves performance. Lastly, the supernodal Cholesky algorithm shows 

how better caching with BLAS 3 routines reduces runtimes. 

 
Experiment 1: Direct factorizations 

Matrix Type: Random (SSPD) matrix A 

Properties: Dim A = 500, density = .1, overlap criteria = 0-90% 

Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)) ); 

direct_speedtests(A, 500, .1); 

 

Method Symbolic Factorization Numerical Factorization 

cholesky_naive NA 9.2888 

etree_cholsolve w/o dense panel 0.0250 7.3162 

etree_cholsolve w/ dense panel 0.0456 3.7949 

sn_cholsolve direct average 0.3390 2.7223 

Table 2: Runtimes (sec) of 4 direct algorithms on 
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The second experiment uses the same random 500x500 SSPD matrix above. We give a run-time analysis 

for the incomplete supernodal Cholesky algorithm with some applications to an iterative solver. In 

particular, we solve the matrix system Ax=ones(m,1) using the preconditioned conjugate gradient (PCG) 

solver and the incomplete factorization L as the preconditioner. For some base cases, we run PCG 

without a precondition and then with cholinc-inf. For the supernodal Cholesky factorization, we vary the 

dropping and target parameters τ and γ. 

 

From the base cases, we see that PCG took 100 iterations to converge without a preconditioner and even 

longer with the cholinc-inf. With the supernodal incomplete Cholesky factorization, the number of 

iterations drops from 19 to 2 relative to an exponentially decreasing τ. The number of iterations did not 

vary with respect to the tested γ parameters. This reduction in iterations is compensated by the 
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increasing time needed to compute the preconditioner as a smaller dropping threshold τ indicates that the 

incomplete factorization approaches the direct factorization. 

 
 

Experiment 2: Incomplete factorization with PCG [Ax = ones(m,1) ] 

Matrix Type: Random (SSPD) matrix A 

Properties Dim M = 500, density = .1, overlap criteria = 90%, pcg tol=1e-6 

Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)) ); 

precon_tests(A, 500, .1, .9); 

 

PCG + Preconditioner PCG Iterations 

No preconditioner 100 

cholinc-inf 150 

 

Table 3: PCG Iterations for supernodal incomplete Cholesky with varying (τ, γ) dropping parameters 

 

The third experiment repeats the first experiment with now a structured matrix (plbuckle.mat) 3. Note 

that Matlab may give a warning for increasing the recursion limit.  

 
Figure 8: Non-zero pattern of plbuckle.m  
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γ (Row) 1.0 1.5 2.0 2.5 3.0 

τ  (Column)      

1e-2 19 19 19 19 19 

1e-3 6 6 6 6 6 

1e-4 3 3 3 3 3 

1e-5 2 2 2 2 2 

γ (Row) 1.0 1.5 2.0 2.5 3.0 

τ (Column)      

1e-2 0.6036 

0.4199 

0.5977 

0.4181 

0.5940 

0.4174 

0.5978 

0.4209 

0.6015 

0.4157 

1e-3 0.5981 

0.6059 

0.5971 

0.6160 

0.6038 

0.6148 

0.5971 

0.6157 

0.5895 

0.6147 

1e-4 0.5902 

0.9359 

0.5904 

0.9647 

0.6032 

0.9640 

0.5936 

0.9643 

0.5966 

0.9704 

1e-5 0.6032 

1.2308 

0.5931 

1.4040 

0.5969 

1.4291 

0.5965 

1.4708 

0.6045 

1.5038 

Table 4: Runtimes (sec) for preconditioner generation from supernodal incomplete Cholesky symbolic (top) & 

numeric factorizations (bottom) 



 

For this matrix with a recurring block structure, the results show a significant improvement (9x) in 

performance when using an elimination tree over the naïve version. Improvements via dense blocking 

and supernodes remain similar to the first experiment. A notable difference is the longer symbolic 

factorization time which may be due to the lack of BLAS routines used in the implementation of this 

phase. 
 

Experiment 3: Direct factorizations 

Matrix Type: ‘Structured’ (SSPD) matrix (plbuckle.mat) 

Properties: Dim A = 1282, overlap criteria = 0-90% 

Matlab cmds: load plbuckle; 

set(0, 'RecursionLimit', 1282); 

direct_speedtests(Problem.A, 1282, .1); 

 

Method Symbolic Factorization Numerical Factorization 

cholesky_naive NA 63.6248 

etree_cholsolve w/o dense panel 0.2991 7.8606 

etree_cholsolve w/ dense panel 0.3373 3.1274 

sn_cholsolve direct average 2.0231 2.1677 

Table 5: Runtimes (sec) of 4 direct algorithms 

The fourth experiment repeats the second experiment with the same structured matrix (plbuckle.mat). 

Note that Matlab may give a warning for increasing the recursion limit. 

 

For this matrix with a recurring block structure, the results show that the PCG without a preconditioner 

or with a cholinc-inf preconditioner did not converge within 1000 iterations. When using the 

preconditioner from the supernodal incomplete Cholesky, the PCG solver converges to the solution 

within 29 to 5 iterations. We also spot some variability in iterations with respect to the γ parameter. As γ 

increases, the restriction on the number of remaining rows per supernode is lessened so that fewer rows 

are dropped. This is reflected by the increasing numerical factorization times with respect to increasing γ 

as fewer drops or more fill-ins imply a closer factorization to the direct Cholesky method. 

 
 

Experiment 2: Incomplete factorization with PCG [Ax = ones(m,1) ] 

Matrix Type: ‘Structured’ (SSPD) matrix (plbuckle.mat) 

Properties Dim A = 1282, overlap criteria = 90%, pcg tol=1e-6 

Matlab cmds: load plbuckle; 

set(0, 'RecursionLimit', 1282); 

precon_tests(Problem.A, 500, .1, .9); 

 

PCG + Preconditioner PCG Iterations 

No preconditioner Did not converge > 1000 

cholinc-inf Did not converge > 1000 

 

 

γ (Row) 1.0 1.5 2.0 2.5 3.0 

τ  (Column)      

1e-2 29 24 24 24 24 

1e-3 14 12 10 9 8 

1e-4 10 9 8 6 6 

1e-5 10 8 8 6 5 

Table 6: PCG Iterations for supernodal incomplete Cholesky with varying (τ, γ) dropping parameters 



 

Conclusions 
 

From our experiments, we see that elimination trees and generalized supernodal trees enhance the 

runtime performance of both the direct and incomplete Cholesky factorizations for SSPD matrices. In 

the case of structured SSPD matrices, the use of elimination trees significantly reduces the time 

necessarily to update columns in the Cholesky algorithm. In the case of random SSPD matrices, the 

improvements were smaller as the depth of the elimination tree was more dependent on the density 

parameter for the number of non-zeroes elements in the matrix. 

 

The use of dense blocking in the supernodal structure did show some improvements in performance due 

to memory caching from higher level BLAS routines. The amount of improvement, as mentioned in ref. 

[1], is related to the average width (columns) of the supernodes which tends to range from 1 to 10 in 

their test cases. Thus, for any significant improvements to be made, the matrix length (size) or at least 

the non-zero patterns along supernodes must be sufficiently large for the level 3 BLAS routines take 

advantage of. Such a size is not possible in the Matlab implementation of this supernodal algorithm. 

 

The strongest results are seen in the supernodal incomplete Cholesky factorization when applied to the 

PCG solver. By varying parameters (τ, γ), we obtain a measurable tradeoff between the time taken to 

compute the preconditioner versus the number of iterations for the PCG solver to converge. The use of a 

secondary parameter γ also gives an estimate on how close a factorization is from one without any fill-

ins to one that is close to the direct factorization. We note that adaptive techniques for altering (τ, γ) 

during runtime are elaborated in ref. [1] but are not verified in this report. 

 

Open Problems 
 

 Adapting flexible parameter selection for incomplete LU factorization 

 Applying machine learning techniques for parameter selection based on features in the input 

matrix space 

 Obtaining optimal time tradeoff such that preconditioner generation time + iterative solver time 

outperforms direct solver for super large systems (>1 million unknowns) 

 

 

 

 

 

 

 

γ (Row) 1.0 1.5 2.0 2.5 3.0 

τ (Column)      

1e-2 2.3723 

1.2429 

2.4067 

1.2645 

2.3076 

1.2718 

2.3152 

1.2767 

2.3658 

1.2674 

1e-3 2.3479 

1.4496 

2.3640 

1.5465 

2.3635 

1.7087 

2.3843 

1.7229 

2.3619 

1.7270 

1e-4 2.3608 

1.7805 

2.3566 

1.9621 

2.3427 

1.8973 

2.3801 

2.0141 

2.4088 

2.0671 

1e-5 2.3754 

2.0042 

2.3762 

2.1068 

2.3686 

2.2160 

2.3897 

2.1163 

2.3746 

2.1369 

Table 7: Runtimes (sec) for preconditioner generation from supernodal incomplete Cholesky symbolic (top) & 

numeric factorizations (bottom) 
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