

Direct and Incomplete

Cholesky Factorizations with

Static Supernodes
AMSC 661 Term Project Report

Yuancheng Luo

2010-05-14

Introduction

Incomplete factorizations of sparse symmetric positive definite (SSPD) matrices have been used to

generate preconditioners for various iterative solvers. These solvers generally use preconditioners

derived from the matrix system, , in order to reduce the total number of iterations until

convergence. In this report, we investigate the findings of ref. [1] on their method for computing

preconditioners from SSPD matrix . In particular, we focus on their first supernodal Cholesky

factorization algorithm designed for matrices with naturally occurring block structures.

Figure 1: Incomplete Cholesky factorization with static supernodes algorithm [1]

The supernodal incomplete Cholesky algorithm for preconditioner generation is motivated by how the

Cholesky factorization accesses column nodes, the overhead from indirect addressing of SSPD matrix ,

and the memory advantages obtained from level 3 BLAS routines with dense blocking. We introduce

this motivation and explain some priors such as supernodal elimination trees [2] in the background

section. In Matlab, we implement the above algorithm along with several comparable to illustrate a

proof of correctness and to support the motivating claims. Partial results are shown in the methods

section. Last, we experiment with the dropping strategies used in the incomplete factorization for both

randomized and structured matrices. Our findings and the analysis are in the experiments section.

Background

Recall that the Cholesky factorization is a special case of the LU decomposition for symmetric positive

definite (SPD) matrices where we factor for lower-triangular matrix .

Figure 2: Pseudo-code for right-looking Cholesky factorization where matrix L is initially the lower triangle portion

of matrix A [3]

For SSPD matrix , we see that the column updates in L depend on if coefficients from previously

computed columns are non-zero. In the sparse case where most elements are zero, it is advantageous to

create a dependency graph for matrix columns. A specific case of this dependency graph is the

elimination tree where nodes represent columns and edges represent a parent/child dependency between

two columns. i.e. a child node is a column that must be fully updated before the parent node or column

can be updated.

 is the set of non-zero pattern (index) of columns j below the

diagonal.

 is the set of non-zero pattern (index) of columns j below and

including the diagonal.

 is the smallest element of

 defines the parent function in the elimination tree

Figure 3: Symbolic factorization via elimination tree
1

Generating the elimination tree is done in the symbolic factorization phase so that a post-order traversal

of the elimination tree in a numerical factorization phase gives the correct ordering of columns to

update. Also, indicates the row indices in column j that will be updated and is indicative of potential

fill-ins in the final factorization L.

For the numerical factorization phase, a left-looking Cholesky factorization algorithm is performed

during the post-order traversal of the elimination tree. From the row indices in , we can form a dense

sub-column j and update it by searching leftwards for columns that have a non-zero element. A more

efficient method reuses the elimination tree to search for nodes in the sub-tree of j instead.

Figure 4: Level 1 BLAS updates (poor cache efficiency) for left-looking Cholesky columns [2]

The supernodal symbolic factorization generalizes the single column structure of the elimination tree.

Rather than tracking a single column per node, a supernode may contain multiple adjacent columns that

share a similar non-zero pattern structure. The first constraint is that adjacent columns in a supernode

must first be parent nodes from the single elimination tree. A second constraint is an overlap criteria

which defines a percentage threshold for the number of common non-zero row indices shared between

adjacent columns. We construct the supernodal elimination tree by merging sub-trees from the original

elimination tree with respect to the above constraints.

1
 Creative Commons Attribution-ShareAlike License

In the supernodal numerical factorization phase, a similar left-looking Cholesky factorization algorithm

is performed during the post-order traversal of the supernodal elimination tree. We form dense column

blocks and update it by searching leftwards or down the supernodal sub-tree for columns that have a

non-zero where j is one of the column index in the current supernode.

Figure 5: Level 3 BLAS updates (superior cache efficiency) for left-looking Cholesky supernodes [2]

Methods

Adapting the supernodal Cholesky factorization algorithm to an incomplete factorization in the static

blocking case is done by employing a dropping strategy for fill-in elements during numerical

factorization. In ref. [1], the threshold τ and γ are used to represent a drop threshold and a target number

of rows per supernode. The drop score for each row is computed once a supernode is fully updated. If

the drop score falls below τ, then the row within the supernode is zeroed or removed. If the number of

rows remaining is greater than γ times the number of initial non-zero rows in the supernode prior to any

updating, then a less restrictive drop threshold is computed.

Figure 6: A drop score (top) is computed for each row i where k = leftmost column index of supernode I, m = number

of columns. In the second drop threshold (bottom), dmax = maximum drop score <= 1, dmin =minimum drop score >= τ

For the Matlab implementation, we wrote both the symbolic and numerical factorization steps for the

single elimination tree and supernodal algorithms from scratch (No open source code available before

this). To demonstrate proof of correctness, we generate a random 500x500 SSPD matrix for input. For

the direct Cholesky factorization, we use Matlab’s chol command as a base case. For incomplete

Cholesky, we use Matlab’s inf-cholinc for a base-case. The residual norm2(A-LL
T
) is used to determine

accuracy.

Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)));

etree_cholsolve_test(A, 500, .1, 1)

sn_cholsolve_test(A, 500, .1, .9, 1e-7, 3, 1)

For direct factorizations, we test the following:

 Built-in matlab chol

 Naïve left-looking Cholesky

 Single elimination tree Cholesky

 Supernodal direct Cholesky

For incomplete factorizations, we test the following:

 Built-in matlab cholinc with inf as drop parameter (no fill-ins, handles diagonal)

 Supernodal incomplete Cholesky with decreasing τ and fixed γ

Method Residual norm2(A-LL

T
)

chol 7.8076e-016

cholesky_naive 1.5585e-015

etree_cholsolve direct 1.5585e-015

sn_cholsolve direct 6.8895e-016

inf-cholinc 0.5557

sn_cholsolve incomplete (τ = 1e-1, γ = 3) 0.5447

sn_cholsolve incomplete (τ = 1e-3, γ = 3) 0.0226

sn_cholsolve incomplete (τ = 1e-5, γ = 3) 1.3270e-004

sn_cholsolve incomplete (τ = 1e-7, γ = 3) 8.9588e-007

Table 1: Residuals of computed factors of A from various implemented algorithms

Figure 7: Non-zero pattern in lower triangle of random 500x500 SSPD matrix A (top left), direct factorization L (top

right), incomplete factorization τ = 1e-3, γ = 3 (bottom left), incomplete factorization τ = 1e-5, γ = 3 (bottom right)

From the direct factorization results, we see that the naïve and single elimination tree Cholesky

algorithms both produced a comparable factorizations with near accuracy to chol. For the supernodal

direct Cholesky, it obtained an even more accurate factorization than chol.

From the incomplete factorization results, we see that as the dropping tolerance decreases, the

factorization from the supernodal Cholesky algorithm converges to the direct factorization. This can also

be seen in the figure of non-zero elements above.

Experiments

The first experiment is done with the same random 500x500 SSPD matrix. We give a run-time analysis

of the symbolic and numerical factorization phases for the various direct algorithms implemented. This

is to show improving runtime performances as we make better use of the sparsity structure.

We see that a naïve left-looking Cholesky implementation, which made no use of sparsity and non-zero

patterns, completes the factorization with the longest time. Next, a single elimination tree Cholesky

factorization that makes no use of dense columns during the numerical factorization step shows that the

elimination tree does reduce the search time for column updating. The algorithm is expanded to include

dense column updates during the numerical factorization phase. The results indicate that dense blocking,

even along a single dimension, improves performance. Lastly, the supernodal Cholesky algorithm shows

how better caching with BLAS 3 routines reduces runtimes.

Experiment 1: Direct factorizations

Matrix Type: Random (SSPD) matrix A

Properties: Dim A = 500, density = .1, overlap criteria = 0-90%

Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)));

direct_speedtests(A, 500, .1);

Method Symbolic Factorization Numerical Factorization

cholesky_naive NA 9.2888

etree_cholsolve w/o dense panel 0.0250 7.3162

etree_cholsolve w/ dense panel 0.0456 3.7949

sn_cholsolve direct average 0.3390 2.7223

Table 2: Runtimes (sec) of 4 direct algorithms on
2

The second experiment uses the same random 500x500 SSPD matrix above. We give a run-time analysis

for the incomplete supernodal Cholesky algorithm with some applications to an iterative solver. In

particular, we solve the matrix system Ax=ones(m,1) using the preconditioned conjugate gradient (PCG)

solver and the incomplete factorization L as the preconditioner. For some base cases, we run PCG

without a precondition and then with cholinc-inf. For the supernodal Cholesky factorization, we vary the

dropping and target parameters τ and γ.

From the base cases, we see that PCG took 100 iterations to converge without a preconditioner and even

longer with the cholinc-inf. With the supernodal incomplete Cholesky factorization, the number of

iterations drops from 19 to 2 relative to an exponentially decreasing τ. The number of iterations did not

vary with respect to the tested γ parameters. This reduction in iterations is compensated by the

2
 Intel Core2 6600, Matlab 2008b

increasing time needed to compute the preconditioner as a smaller dropping threshold τ indicates that the

incomplete factorization approaches the direct factorization.

Experiment 2: Incomplete factorization with PCG [Ax = ones(m,1)]

Matrix Type: Random (SSPD) matrix A

Properties Dim M = 500, density = .1, overlap criteria = 90%, pcg tol=1e-6

Matlab cmds: A = sprandsym(500, .1 , abs(rand(500,1)));

precon_tests(A, 500, .1, .9);

PCG + Preconditioner PCG Iterations

No preconditioner 100

cholinc-inf 150

Table 3: PCG Iterations for supernodal incomplete Cholesky with varying (τ, γ) dropping parameters

The third experiment repeats the first experiment with now a structured matrix (plbuckle.mat) 3. Note

that Matlab may give a warning for increasing the recursion limit.

Figure 8: Non-zero pattern of plbuckle.m

3
 University of Florida Sparse Matrix Collection <http://www.cise.ufl.edu/research/sparse/matrices/>

γ (Row) 1.0 1.5 2.0 2.5 3.0

τ (Column)

1e-2 19 19 19 19 19

1e-3 6 6 6 6 6

1e-4 3 3 3 3 3

1e-5 2 2 2 2 2

γ (Row) 1.0 1.5 2.0 2.5 3.0

τ (Column)

1e-2 0.6036

0.4199

0.5977

0.4181

0.5940

0.4174

0.5978

0.4209

0.6015

0.4157

1e-3 0.5981

0.6059

0.5971

0.6160

0.6038

0.6148

0.5971

0.6157

0.5895

0.6147

1e-4 0.5902

0.9359

0.5904

0.9647

0.6032

0.9640

0.5936

0.9643

0.5966

0.9704

1e-5 0.6032

1.2308

0.5931

1.4040

0.5969

1.4291

0.5965

1.4708

0.6045

1.5038

Table 4: Runtimes (sec) for preconditioner generation from supernodal incomplete Cholesky symbolic (top) &

numeric factorizations (bottom)

For this matrix with a recurring block structure, the results show a significant improvement (9x) in

performance when using an elimination tree over the naïve version. Improvements via dense blocking

and supernodes remain similar to the first experiment. A notable difference is the longer symbolic

factorization time which may be due to the lack of BLAS routines used in the implementation of this

phase.

Experiment 3: Direct factorizations

Matrix Type: ‘Structured’ (SSPD) matrix (plbuckle.mat)

Properties: Dim A = 1282, overlap criteria = 0-90%

Matlab cmds: load plbuckle;

set(0, 'RecursionLimit', 1282);

direct_speedtests(Problem.A, 1282, .1);

Method Symbolic Factorization Numerical Factorization

cholesky_naive NA 63.6248

etree_cholsolve w/o dense panel 0.2991 7.8606

etree_cholsolve w/ dense panel 0.3373 3.1274

sn_cholsolve direct average 2.0231 2.1677

Table 5: Runtimes (sec) of 4 direct algorithms

The fourth experiment repeats the second experiment with the same structured matrix (plbuckle.mat).

Note that Matlab may give a warning for increasing the recursion limit.

For this matrix with a recurring block structure, the results show that the PCG without a preconditioner

or with a cholinc-inf preconditioner did not converge within 1000 iterations. When using the

preconditioner from the supernodal incomplete Cholesky, the PCG solver converges to the solution

within 29 to 5 iterations. We also spot some variability in iterations with respect to the γ parameter. As γ

increases, the restriction on the number of remaining rows per supernode is lessened so that fewer rows

are dropped. This is reflected by the increasing numerical factorization times with respect to increasing γ

as fewer drops or more fill-ins imply a closer factorization to the direct Cholesky method.

Experiment 2: Incomplete factorization with PCG [Ax = ones(m,1)]

Matrix Type: ‘Structured’ (SSPD) matrix (plbuckle.mat)

Properties Dim A = 1282, overlap criteria = 90%, pcg tol=1e-6

Matlab cmds: load plbuckle;

set(0, 'RecursionLimit', 1282);

precon_tests(Problem.A, 500, .1, .9);

PCG + Preconditioner PCG Iterations

No preconditioner Did not converge > 1000

cholinc-inf Did not converge > 1000

γ (Row) 1.0 1.5 2.0 2.5 3.0

τ (Column)

1e-2 29 24 24 24 24

1e-3 14 12 10 9 8

1e-4 10 9 8 6 6

1e-5 10 8 8 6 5

Table 6: PCG Iterations for supernodal incomplete Cholesky with varying (τ, γ) dropping parameters

Conclusions

From our experiments, we see that elimination trees and generalized supernodal trees enhance the

runtime performance of both the direct and incomplete Cholesky factorizations for SSPD matrices. In

the case of structured SSPD matrices, the use of elimination trees significantly reduces the time

necessarily to update columns in the Cholesky algorithm. In the case of random SSPD matrices, the

improvements were smaller as the depth of the elimination tree was more dependent on the density

parameter for the number of non-zeroes elements in the matrix.

The use of dense blocking in the supernodal structure did show some improvements in performance due

to memory caching from higher level BLAS routines. The amount of improvement, as mentioned in ref.

[1], is related to the average width (columns) of the supernodes which tends to range from 1 to 10 in

their test cases. Thus, for any significant improvements to be made, the matrix length (size) or at least

the non-zero patterns along supernodes must be sufficiently large for the level 3 BLAS routines take

advantage of. Such a size is not possible in the Matlab implementation of this supernodal algorithm.

The strongest results are seen in the supernodal incomplete Cholesky factorization when applied to the

PCG solver. By varying parameters (τ, γ), we obtain a measurable tradeoff between the time taken to

compute the preconditioner versus the number of iterations for the PCG solver to converge. The use of a

secondary parameter γ also gives an estimate on how close a factorization is from one without any fill-

ins to one that is close to the direct factorization. We note that adaptive techniques for altering (τ, γ)

during runtime are elaborated in ref. [1] but are not verified in this report.

Open Problems

 Adapting flexible parameter selection for incomplete LU factorization

 Applying machine learning techniques for parameter selection based on features in the input

matrix space

 Obtaining optimal time tradeoff such that preconditioner generation time + iterative solver time

outperforms direct solver for super large systems (>1 million unknowns)

γ (Row) 1.0 1.5 2.0 2.5 3.0

τ (Column)

1e-2 2.3723

1.2429

2.4067

1.2645

2.3076

1.2718

2.3152

1.2767

2.3658

1.2674

1e-3 2.3479

1.4496

2.3640

1.5465

2.3635

1.7087

2.3843

1.7229

2.3619

1.7270

1e-4 2.3608

1.7805

2.3566

1.9621

2.3427

1.8973

2.3801

2.0141

2.4088

2.0671

1e-5 2.3754

2.0042

2.3762

2.1068

2.3686

2.2160

2.3897

2.1163

2.3746

2.1369

Table 7: Runtimes (sec) for preconditioner generation from supernodal incomplete Cholesky symbolic (top) &

numeric factorizations (bottom)

References

[1] Adaptive Techniques for Improving the Performance of Incomplete Factorization Preconditioning. Anshul Gupta

and Thomas George, SIAM, February 8, 2010.

[2] Efficient Sparse Cholesky Factorization. Jonathan Hogg. J.Hogg@ed.ac.uk. University of Edinburgh. August 13,

2006.

[3] A Comparative Evaluation of Nodal and Supernodal Parallel Sparse Matrix Factorization: Detailed Simulation

Results, Edward Rothberg and Anoop Gupta, Technical Report STAN-CS-89- 1286, Stanford University, 1989.

