
FAST NUMERICAL AND MACHINE LEARNING ALGORITHMS
FOR SPATIAL AUDIO REPRODUCTION

by

Yuancheng Luo

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Ramani Duraiswami, Chair/Advisor
Dr. Dmitry N. Zotkin
Professor Larry Davis
Professor Hal Daumé III
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ABSTRACT

Title of dissertation: FAST NUMERICAL AND
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Yuancheng Luo, Doctor of Philosophy, 2014

Dissertation directed by: Professor Ramani Duraiswami
Department of Computer Science

Audio reproduction technologies have underwent several revolutions from a purely

mechanical, to electromagnetic, and into a digital process. These changes have resulted

in steady improvements in the objective qualities of sound capture/playback on increas-

ingly portable devices. However, most mobile playback devices remove important spatial-

directional components of externalized sound which are natural to the subjective experi-

ence of human hearing. Fortunately, the missing spatial-directional parts can be integrated

back into audio through a combination of computational methods and physical knowledge

of how sound scatters off of the listener’s anthropometry in the sound-field. The former

employs signal processing techniques for rendering the sound-field. The latter employs

approximations of the sound-field through the measurement of so-called Head-Related

Impulse Responses/Transfer Functions (HRIRs/HRTFs).

This dissertation develops several numerical and machine learning algorithms for

accelerating and personalizing spatial audio reproduction in light of available mobile

computing power. First, spatial audio synthesis between a sound-source and sound-field



requires fast convolution algorithms between the audio-stream and the HRIRs. We intro-

duce a novel sparse decomposition algorithm for HRIRs based on non-negative matrix

factorization that allows for faster time-domain convolution than frequency-domain fast-

Fourier-transform variants. Second, the full sound-field over the spherical coordinate

domain must be efficiently approximated from a finite collection of HRTFs. We develop

a joint spatial-frequency covariance model for Gaussian process regression (GPR) and

sparse-GPR methods that supports the fast interpolation and data fusion of HRTFs across

multiple data-sets. Third, the direct measurement of HRTFs requires specialized equip-

ment that is unsuited for widespread acquisition. We “bootstrap” the human ability to

localize sound in listening tests with Gaussian process active-learning techniques over

graphical user interfaces that allows the listener to infer his/her own HRTFs. Experiments

are conducted on publicly available HRTF datasets and human listeners.
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Chapter 1: Introduction

Sound recording and audio playback technologies have undergone several revolutions

since their inceptions over a century ago. Advances in sound recording processes have

steadily improved from low to high precision and accuracy: Analog devices such as the

phonograph cylinder physically transcribed changes in the sound-air pressure into grooves

on metal plates during the early industrialized era. The processes soon became electronic

via the transformation of the physical mechanics into electric currents and their storage on

magnetic tape during the modern era; the polarity of the current can be edited and stored

on the magnetic tape without significant loss in quality. The latest revolution in the digital

domain allowed sound to be stored in high resolution digital representations (bits) after the

invention of the microprocessor. Advances in audio playback processes have underwent

similar changes in terms of fidelity and portability: Early mechanical gramophones were

soon replaced by electromagnet based dynamic loudspeakers and later by increasingly

portable variants such as the head/ear phone. Stereo and surround-sound reproduction

standards all require a pair of head-phones or multiple loudspeakers.

While these developments have improved various technologies for objectively record-

ing and reproducing audio content, many important subjective aspects of audio perception

were ignored. One such aspect is the spatial perception/dimension of audio where sounds,
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heard by humans, naturally contain cues for the direction and distances of their acoustic-

sources [3]. Directional content is valuable as it parameterizes acoustic events in space

much in the same way that objects can be arranged in a visual system; both have a physical

origin and a direction relative to a field of view that is knowable by the subject. Moreover,

this human ability to localize sound-source directions may be more valuable than other

perceptual qualities such as speech intelligibility [4] and psychophysical masking [5, 6]

in varying contexts; sound-source localization extends the human sensory awareness of

events to regions outside the visual field and behind occlusions. For example, man’s

spatial auditory perception has saved him from a host of potentially lethal circumstances

from the sound of an incoming automobile in one’s blind-spot, to the noise of a river when

water is scarce, to the footsteps of an ambushing saber-tooth tiger during the night!

Study of such phenomena belongs to the field of spatial audio where its primary

concerns are directed towards the understanding of the listener’s phenomenology via sub-

jective assessments of hearing. However, an instrumental treatment of such studies would

evaluate their usefulness for external adjustments, namely the reproduction of audio that

can be spatialized by the subject through the means of technology. Unfortunately, tradi-

tional sound-recording technologies only capture the spatial characteristics of sound as

recorded by receivers that are independent of the human listener; many subjective cues

such as the acoustic sound paths in the near-field centered about the listener’s head are

not measured.

This consequent loss of spatial information is especially apparent when listening

to audio over mobile devices such as head/ear phones; 3D sound is no longer external-

ized without recreating how sound scatters off of the listener’s anthropometry such as
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his/her head, torso, and outer-ears (pinnae). Recreating this sound-field is a difficult task

as parts of the listener’s anthropometry interfere with the sound spectrum [3]: The human

head blocks high frequencies. The shape of the pinnae causes reflections and resonances

that alter the spectrum of the sound along different angles of incidences. Reflections off

the body/torso alter the low-frequency range. These factors are all individualized due to

variations in the shape of anthropometry across the human population but can be sum-

marized by so-called “Head-related Transfer Functions” (HRTFs) [7] which can be em-

pirically measured. While directly measuring HRTFs requires specialized equipment that

few individuals/labs possess, those with knowledge of one’s HRTFs can place arbitrary

sound-sources or virtual loudspeakers in 3D with great accuracy.

Fortunately, recent advances in both audio streaming rates and available process-

ing power have created opportunities for introducing spatial information back into audio.

Moreover, there’s a growing demand for personalized technology that has generated new

incentives for the re-integration and prediction of the user’s information with regards to

biometrics and preferences [8]. Such a movement is possible through wide-spread means

of acquiring data through the increased connectivity between general-purpose computing

devices and aggregative services. Data acquisition technologies such as cameras, head-

phones, and microphones are commonly built into mobile computing devices such as

laptop, smart-phone, and tablets. The latter provides a medium for the recorded contents

to be processed and then personalized through the organization, ranking, and selection

of content by both machine and user before transferred and aggregated over a network

for analysis. Subsequent knowledge discovery from the aggregated data pool is deliv-

ered back to the mobile platform through the network and their exposure to the subject
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provides new feedback.

This new-found availability of data and the accessibility to mobile computing power

by users has elevated two interdisciplinary fields of studies in relation to digital media.

The first is the development of efficient numerical and computational methods which are

relevant for real-time streaming applications on low-power mobile computing devices.

The second is the development of machine learning methods for inference and person-

alization which are relevant for predicting the subject’s preferences. For spatial audio

reproduction, we show that these two disciplines provide the means for accelerating spa-

tial audio rendering and for learning individualized sound-source localization cues and

HRTFs. We explore and develop several algorithms in depth for these purposes within

this dissertation.

1.1 Spatial Audio Reproduction and Applications

Spatial audio reproduction is the synthesis of sounds as if heard from a virtual source in

3D space. The field of spatial audio has a long history that begins with psychoacoustic

models of how humans localized sound. One such model in literature, Lord Rayleigh’s

duplex theory [9], posits that the sound-source direction can be estimated by a set of

binaural cues derived from sound heard by the two ears; the interaural time difference

(ITD) and the interaural intensity difference (IID) define the differences in the time-of-

arrival and amplitude between a sound’s wavefront reaching the subject’s left and right

ears respectively [7]. Later models relate sound-source direction to ITD via simplified

models of a spherical or ellipsoidal head [2, 10]. While these binaural cues are important
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for spatialization, especially for sound-source directions that are coplanar and horizontal

to the two ears (horizontal plane), they are subsumed by more complex spectral cues

that result from sound scattering and reflecting off of the subject’s anthropometry. The

anthropometry features, most notably those that characterize the parts of the pinnae, vary

considerably with the individual and thus motivate the need for personalized spatial audio

[7, 11].

One method for quantifying the audio spectral cues for the individual is to phys-

ically measure impulse responses between the ear canals and sound-source locations in

3D often positioned over a spherical grid; an impulse response is the output (response)

of a dynamic system when presented with a brief input signal (impulse). Microphones

placed within an individual’s ears record the impulse emitted from loudspeakers dis-

tributed over a spherical array. The recordings form the direction-dependent responses

that are summarized by the so called “Head-Related Impulse Response/Transfer Func-

tion” (HRIR/HRTF). Moreover, the effects of the recording environment are removed by

subtracting away a recording done in the absence of the subject; the HRTFs represent only

the spectral distortions from sound scattering off the listener in an otherwise free-field.

Knowledge of an individual’s HRTFs allow one to position sound-sources arbi-

trarily around a subject’s ears for playback through headphones; several applications are

possible from these assumptions. First, virtual acoustic scenes consisting of sound prop-

agating through complex environments can be simulated in software and then heard by

the subject. Such simulations generally model the sound-reflection paths off of an under-

lying geometric representation of the environment and then computing the time-delays

and angles of reflections that would enter a virtual listener’s ear. This setup may be em-
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ployed in virtual acoustic displays (VADs) [12, 13] in combination with a 3D graphics

engine where a polygonal decomposition of the environment and its material properties

are hard-coded thus remain relatively constant during run-time. Second, realistic acoustic

scenes recorded by 3D audio camera / spherical microphone array can be navigated by a

subject using a head-tracker and graphical user interface (GUI) [14]. If the orientation of

the listener’s ear or virtual ears is known, then it is possible to filter the acoustic streams

(for directional microphones) or the beam-formed acoustic streams (for omni-directional

microphones) with the head-aligned HRTFs before mixing and rendering.

The general process for spatial audio reproduction can be divided into three stages.

We present their respective background and literature review in the subsequent sub-sections:

1. Section 1.2 describes the limits of the conventional (direct) HRTF measurement

process and alternative methods for inferring HRTF.

2. Section 1.3 describes the interpolation of a finite collection of HRTFs over the

spherical coordinate domain.

3. Section 1.4 describes the synthesis/filtering of spatial audio between HRTFs and

arbitrary sound-sources.

This dissertation addresses various problems that arise from each of the aforementioned

stages; many of our contributions draw inspiration from the fields of machine learning,

numerical linear algebra, and signal processing which we have already published in [15–

23]. The organization of the remaining dissertation is presented in section 1.6.
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1.2 Head-Related Transfer Function (HRTF)

Formally, an HRTF is the far-field frequency response of a listener’s left or right ear mea-

sured from a specific point in the free-field in 3D to a specific point in the ear canal [24].

The effects of the measurement environment are removed by dividing out a recording

in the absence of the listener in the frequency domain. HRTFs have insofar been phys-

ically measured from real subjects [1, 25, 26], computationally simulated from human

meshes [27–29], inferred from human anthropometry [30–32], and tuned through listen-

ing tests [20, 33, 34].

As physical measurements, HRIRs and HRTFs are typically parameterized along

a spherical coordinate system defined by azimuth φ (left and right) and elevation θ (up

and down) directions. In the direct-measurement process, two small microphones are par-

tially inserted into a subject’s blocked ear canals and record a known broad-band spectral

stimulus played by loudspeakers along a spherical grid. The loudspeakers are located

along a fixed radius from the center of the head and can be specified in terms of azimuth

φ and elevation θ angles as shown in Figure. 1.1. The radius or the loudspeaker distance

from the subject is ignored as the sound-wave can be approximated by a plane-wave at

larger measurement distances; the impulse from a common loudspeaker tends toward a

plane-wave whose relative direction to both left and right ears are the same.

The HRIR and HRTF representations are derived as follows: Microphone record-

ings are outputs or the left and right ear finite impulse responses (FIRs) of a linear time-
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Figure 1.1: Spherical coordinate system and the direct-measurement process with mics in
left and right ears (left). Pinna anthropometry features (right, image courtesy of [1]).

variant (LTI) system; the frequency-domain HRTF H(f) is given by

H(f) = Output(f)/Input(f), (1.1)

where f is frequency, output is the Fourier transform of the recording, and input is the

Fourier transform of the free-field recording of the loudspeaker’s impulse in the absence

of the subject. Moreover, the HRTF H(f) is the Fourier transform of the time-domain

HRIR h(t); the HRIR can be recovered by taking the inverse Fourier transform of the

HRTF.

1.2.1 Min-phase Representation

HRTFs can be specified by their normalized minimum-phase FIR representations as the

ITD and IID information can be added back into the phase and magnitude components

respectively. The minimum-phase representation relates the HRTF’s magnitude with its

phase response via the Hilbert transform [35]; the initial time-delay is decoupled from the
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FIR due to minimum group-delay and minimum energy-delay properties. In the discrete

case, min-phase representation is computed from the discrete Hilbert transform of the

natural log-magnitude of the HRTF given by

z(n) =


1, n = 0, n = L/2

2, n = 1, . . . , L/2− 1

0, n = L/2 + 1, . . . , L− 1

,
cθ,φ = [F−1 {log |F {hθ,φ}|}] ◦ z,

ĥθ,φ = F−1 {exp {cθ,φ}} ,

(1.2)

where L is the filter length of HRIR hθ,φ(n) and ĥθ,φ(n) is the minimum-phase represen-

tation. This allows VADs systems to characterize auditory cues of subject-direction via

the normalized left and right ear magnitude responses, ITD, and IID [36] (see section 1.4

for details). Only the first half the magnitude frequency responses are required due to

symmetry reflected in the second half. The magnitude HRTFs are also smooth along both

spatial and frequency domains as shown in Fig. 1.2; this property is useful for reducing

the sampling density of the spherical measurement grid and model-order complexity for

inference problems.

1.2.2 Measurement Methods and Costs

While HRTFs are formally acquired via direct measurements, the process has a number

of drawbacks that renders dependent technologies such as VADs and applications inac-

cessible to a wider public. First, direct measurements require specialized equipment such

as wireless microphones that fit into the ear canal and a loudspeaker array that is typically
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Figure 1.2: Log-magnitude HRTFs are smooth along spatial and frequency domains (hor-
izontal and vertical plane directions are shown).

mounted on a rotatable hoop; the loudspeaker must be able to play a test signal upto the

upper bound of the hearing range (16 − 20 kHz) and the mic must be able to sample at

twice that rate. The equipment setup should limit the distortions caused by its own ap-

paratuses via sound-absorption/padding. Moreover, the recordings are typically made in

an near an-echoic chamber as to avoid reflections off the ground and walls. Second, the

subject must commit a considerable investment of time and will-power to the measure-

ment process. Measurement time is not instantaneous due to the speed of sound and must

also factor in changes in the position and number of loudspeakers. The subject’s head and

torso must also remain immobile as to maintain consistency with the spherical coordinate

system. These restrictions have motivated several alternative means for acquiring or in-

directly inferring HRTFs. While such methods that circumvent the direct measurement

process are prone to be less accurate, their varying accessibility to the general public may

be worth consideration. We provide a deconstruction as follows:

One categorization of the various HRTF measurement processes is to consider the

roles between the human subject and the machine-leaner (measurement methodology)
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during the acquisition process. A role may be evaluated in terms of the amount of work, its

computational costs, its accuracy, and its time to completion (see Table 1.1). For a point of

reference, the roles of the subject and machine-leaner in the direct measurement process

are presented: The subject’s role is passive as the two microphones placed within the ear

canals act as the listener/receiver of the test signal. The machine-learner is passive in the

sense that the raw microphone recordings need little post-processing following Eq. 1.1

to derive the HRTF representation. The post-processed HRTFs are accorded the highest

accuracy. The measurement time varies according to the number of loudspeakers. The

monetary costs tend toward the high-end range depending on the design of the apparatus.

Method Human-
Listener 

Machine-
Learner 

Accuracy Equipment 
Costs 

Measure. 
Time 

Direct 
Measurements 

Passive Passive High $$-$$$ Varies 
 

Boundary 
Elements 

Passive Active Moderate-
High 

$$$ Low 

Inference by 
Anthropometry 

Passive Active Low-
Moderate 

$ Low-
Moderate 

Listening Test + 
Hand Tuning 

Active Passive Low-
Moderate 

$ High 

Listening Test + 
Recommender 

Active Active Moderate $ Moderate 

Table 1.1: Functional and structural cost analysis of various HRTF acquisition methods.

Reciprocal direct measurements: The direct measurement process can be accel-
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erated in time via the acoustical principle of reciprocity [26]. In this setup, the speaker

and microphone positions are swapped so that multiple microphones positioned along a

spherical grid centered over a subject can simultaneously record a single impulse or test

signal originating from a microspeaker that is inserted into a subject’s blocked ear canal.

This significantly decreases measurement time as the impulse responses can be recorded

in parallel (simultaneously) w.r.t. two serial impulses originating at the left and right ears

canals; the number of impulses is no longer a function of the number of measurement

directions and the total waiting time is reduced to that of the attenuation of two impulse

trains. The trade-off is the increased costs of number of microphones and the need for a

specialized wide-band microspeaker that fits into the ear-canal.

Boundary elements methods: It is possible to simulate the acoustic scattering of

sound off the listener’s anthropometry provided that one has a high-resolution discretiza-

tion of the surface or boundary conditions. The acoustic scattering process obeys the 3D

Helmholtz equation (see section 1.3) subject to boundary conditions that arise from the

presence of a surface whose sound field is being computed. For HRTFs, such a surface is

defined by a discretized mesh of the subject’s head, torso, and outer ears, often generated

from a point cloud measured by a laser scanner; similar to the direct measurement process,

the subject’s role is passive. The surface polygons or mesh may be generated from com-

putational triangulations algorithms (e.g. Delaunay) of the point cloud in post-processing.

The solutions to the Helmholtz equation are the HRTFs at varying frequencies, which are

found via boundary element methods (BEMs). The simulated HRTFs are sensitive to the

resolution of the mesh discretization where the Nyquist theorem establishes a minimum

of two samples per the shortest wavelength or highest frequency of interest.
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In practice, an additional 6− 10 samples are required [37] due to numerical impre-

cision and convergence issues for solving large system of equations in the BEM. Approx-

imation methods such as conjugate gradients accelerated by the fast multipole method

are often employed. The sample resolution limits the accuracy of the simulated solu-

tions; for the full human auditory range (upto 16 − 20 kHz), 3D scanning technologies

must capture boundary elements less than 3 mm. Cheaper photo imaging technologies

(point clouds from cameras, depth maps from Microsoft Kinect) do not satisfy the resolu-

tion requirements and have difficulty capturing regions of concavity in the outer-ear. The

faster measurement time for the subject via scanning technologies is shifted onto greater

computational work performed by the machine-learner.

Inference by anthropometry: A further relaxation of the BEM for simulating

HRTFs correlates an high-level representation of the subject’s mesh with the HRTFs

via computational methods. The high-level representation is the coarse set of biomet-

rics (physically measured anthropometry) of a subject’s head, torso, and pinna that are

either measured by hand or inferred from calibrated photo-images; similar to the direct-

measurement process, the subject remains passive as another individual performs the mea-

surements or a photograph is taken. For a dataset of corresponding pairs of anthropometry

features and HRTFs that belong to the same subjects, the two domains can be related via

regression models such as multiple linear regression, support vector regression, Gaussian

process regression, and neural network models [31, 32]. This removes the need of an

expensive scanning technologies and a time-consuming BEM solver at a greater cost of

accuracy. In practice, most of these regression models are over-fitted (large generalization

error) due to a small sample size of available subject data for training as existing datasets
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contain less than 50 subjects. Combining multiple datasets is difficult as studies have

shown that HRTFs belonging to the same subject but measured by different labs exhibit

large variances [19].

Listening tests and HRTF query-selection: In a sound-source localization test,

the subject listens to a test signal constructed from filtering a Gaussian white noise process

with a query HRTF over a pair of headphones (see section 1.4); localization of the query-

HRTF by the subject is articulated by reporting the sound-source direction in spherical

coordinates, often through a GUI. The more difficult “query-selection” task (determining

which HRTF for the subject to localize as to match a target-direction) is the subject of

several works in literature. Such methods are inexpensive (equipment-wise) as it boot-

straps or reuses devices (headphone, GUI) that the public possess. Instead, the costs are

deferred to the human-listener and machine-learner who must learn the non-linear rela-

tionship between HRTF and sound-source direction.

In hand-selection/tuning methods, the listener either selects the query-HRTF out of

a large candidate dataset or adjusts the HRTF magnitude spectra over a graphical user

interface (GUI). Hand-selection methods require significant time due to the large number

of candidate HRTFs. Hand-tuning methods (speed and accuracy) depend on the abilities

of the listener; expert listeners can directly adjust the frequency components of the min-

phase magnitude HRTF spectrum in Eq. 1.2 with moderate precision to reflect changes

in spatialization [33]. A non-expert can be given a low-dimensional HRTF representation

such as the leading principal components for adjustment. Another factor is the number

and spacing of target-directions over the spherical coordinate domain; nearby directions

are expected to share similar HRTFs.
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In machine-selection methods, the learning task by the listener is reassigned to a

learning algorithm which possess both prior knowledge of HRTFs are distributed w.r.t.

measurement directions and posterior knowledge of all previous query-HRTF to local-

ized directions made by the user. Two variations are posed: The first is a ranking problem

where the listener orders a small set of candidate HRTFs according to the quality of

spatializations and the distances from the target direction [34]; HRTFs over subsequent

rounds are adjusted according to a genetic algorithm. One drawback is that the rankings

only apply to fixed set of target directions and thus requiring restarts for new directions.

The second variation is a blind-recommendation scheme where the listener localizes an

HRTF without knowledge of the target directions. The learning algorithm has knowledge

of a set of target directions and is able to compute and minimize an error distance for

future queries as a search/optimization problem [20]. Developing a robust learning algo-

rithm for this task remains an open challenge; several works in this dissertation address

this problem.

1.3 Sound-Fields and Spherical Interpolants

While any finite collection of HRTFs can be physically measured, learning a continuous

representation over the spherical coordinate domain is more useful. This has practical rel-

evance as the collection of measured HRTF directions may be sparse and non-uniformly

distributed over the spherical coordinate domain depending on the acquisition method.

For direct measurements, some HRTFs that would have belonged near the bottom of the

head are missing due to the in-feasibility of placing the measurement apparatus along
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those directions. Measurement techniques based on listening tests only learn a sparse

set of HRTFs due to time constraints. Moreover, VADs need to render sound-sources

along any direction which necessitates having a continuous approximation of the entire

sound-field. We refer to such approximations as “spherical interpolants” which have rep-

resentations expressible in terms of a truncated spherical harmonic basis expansion given

by

f(θ, φ) =

p∑
n=0

n∑
m=−n

fmn Y
m
n (θ, φ),

Y m
n (θ, φ) = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ,

(1.3)

for truncation number p, the orthonormal spherical harmonics Y m
n (θ, φ), and the asso-

ciated Legendre polynomials P |m|n (cos θ). This use of the spherical harmonic basis for

HRTFs is justified in part by models of wave propagation from the domain of computa-

tional physics [38, 39].

For example, the Helmholtz wave equation over the 3D sound field that is separable

in frequency and space [40] is given by

∇2ψ(k, r) + k2ψ(k, r) = 0, (1.4)

for spatial frequency (wavenumber) k = ω/c, the speed of sound c, and the Fourier

transform of the pressure ψ(k, r). The solutions to the Helmholtz equation are expressed
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as a series of regular and singular spherical basis functions ψ = ψin + ψs given by

ψin(k, r) =
∞∑
n=0

n∑
m=−n

Amn R
m
n (k, r), ψs(k, r) =

∞∑
n=0

n∑
m=−n

Bm
n S

m
n (k, r),

Rm
n (k, r) = jn(kr)Y m

n (θ, φ), Smn (k, r) = hn(kr)Y m
n (θ, φ),

(1.5)

where Amn , Bm
n are the weights, and jn(kr), hn(kr) the spherical Bessel and Hankel

functions of the first kind respectively. The expansions of ψ in Eqs. 1.4, 1.5 are typically

truncated to n ≤ N terms as a function of wavenumber N = ka, where a is the scatter

radius.

An open challenge is to find such spherical interpolants that generalize the entire

sound field from only a few measurements; several works are described in literature but

have a number of shortcomings. It is possible to learn a least squares fitting of a truncated

spherical harmonic basis to the per-frequency HRTFs [41]. However, such a method

suffers from poor conditioning of the basis matrix due to non-uniform distributions of

measured directions (e.g. randomized measurement directions in cross-validation test-

ing); one solution is to regularize the matrix problem (e.g. Tikhonov regularization) or

improve the condition number through the truncation of small singular values. Another

family of method uses spherical spline interpolations [42, 43] for the non-parametric fit-

ting of per-frequency HRTF measurements; the splines consist of a Legendre polynomial

basis over the sphere. Unfortunately, choosing the model-order (smoothness terms and

truncation number) for these bases is not automatic; such methods also ignore the obser-

vation that correlated measurements along the frequency domain can be used to further

reduce model-order. Several works in this dissertation address these concerns.
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1.4 Spatial Audio Synthesis and Playback

The final step in the spatial audio design is the synthesis of an arbitrary sound-source with

one or more HRTFs for playback (see Figure. 1.3). For a single minimum-phase HRIR

filter that characterizes the linear time-invariant system of the sound-path from sound-

source to ear canal along directions θ, φ, and an input mono-channel sound-source x, the

output signal is computed via the convolution operation ∗ given by

xl = x ∗ ĥl,θ,φ, xr = x ∗ ĥr,θ,φ, (1.6)

for time sample i, and left and right minimum-phase impulse responses ĥl,θ,φ, ĥr,θ,φ. The

discrete time-domain convolution between arbitrary signals u, v of lengths |u|, |v| in

w = u ∗ v is given by

w(i) =
∑
j

u(j)v(i− j + 1), (1.7)

where u(j) = 0 for |u| < j < 1 and v(i − j + 1) = 0 for |v| < i − j + 1 < 1.

The computational cost of the direct convolution is thus quadratic O (|u||v|) operations.

Digital signal processing methods have asymptotically lowered this cost by transforming

both filters into the frequency domain (Fourier basis); discrete convolution via fast Fourier

transform operations F {} [44] is given by

w = F−1 {F {u} ◦ F {v}} , (1.8)
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where ◦ is the Hadamard or element-wise product and requires O ((|u|+ |v|) log (|u|+ |v|))

operations. The outputs xl(i), xr(i) are simultaneously played over left and right ear

headphone channels respectively with appropriate time-delay.

(θ, φ) 

Mono Sound 
Source 

Interpolated 
HRTFs (left ear) 

Interpolated 
HRTFs (right ear) 

Interpolated ITD 
(left ear) 

Interpolated ITD 
(right ear) 

Real-time FIR 
filtering 

Real-time FIR 
filtering 

Digital 
Delay 

Digital 
Delay 

R L 

Figure 1.3: Playback along (θ, φ) via interpolated min-phase HRTFs with time-delay.

A number of challenges are present in this rendering stage which are motivated

by a need for low-latency processing and real-time filtering. If the interpolated HRTFs

are generated on the fly, then the number and forms of computations must be low and

inexpensive respectively. Interpolations over a sphere tend to require evaluations of tran-

scendental (e.g. exponential) and special (e.g. Legendre) functions that are not suited

(slow) for some hardware; many boards have dedicated processors for such operations.

One alternative is to pre-compute and store the interpolated HRTFs over an arbitrarily

dense spherical coordinate grid. Run-time interpolation would follow nearest-neighbor

search techniques over a look-up table. A second problem is the choice between time
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and frequency domain convolution between HRTF and input sound-source signals. It is

well known that both methods have a cross-over point in terms of their computational

costs w.r.t. the filter lengths; time-domain convolution is asymptotically slower than the

frequency-domain variants but the latter has an overhead cost. If the HRIR filters can be

made short and sparse, then the time-domain convolution will be faster; several works in

this dissertation address these concerns.

1.5 Machine Learning

The field of machine learning is comprised of several sub-fields that are concerned with

the prediction and knowledge discovery of data independent of an expert-domain. We

introduce several algorithms belonging to the sub-fields of supervised and unsupervised

learning without the loss of generality to domains outside spatial audio. The choice of

these algorithms is motivated by their ability to make meaningful inferences between

large/varied collections of data and their potential for computationally efficient real-time

processing. The former is accomplished by adapting domain-specific assumptions into

their designs. The latter is accomplished via fast numerical and linear algebra techniques.

Supervised-learning algorithms attempt to map inputs to labeled (output) data which

are already known in a training set. A number of non-parametric methods that belong to

this class do not have fixed model-orders (parameter sizes) but instead adapt in com-

plexity to the number training inputs that are used for inference. Popular kernel meth-

ods such as support vector machines (SVMs) [45] and Gaussian process (GP) regression

(GPR) [46] have parameters that scale in size w.r.t. the evidence set (number of samples
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conditioned upon). This property is useful for making inferences between domains such

as HRTFs, measurement/sound-source localization directions, and human anthropometry

without having knowledge of their causal relationships. However, non-parametric meth-

ods are computationally expensive in both memory and time which are problems that we

address in our works. Related are semi-supervised active-learning methods which acquire

labeled data by interactively querying the user. We develop some of these methods for the

problem of recommending/learning HRTFs for the listener to localize via listening tests.

Unsupervised-learning algorithms attempt to discover an underlying structure be-

hind unlabeled data. Clustering methods such as k-means [47] are related to non-negative

factorization methods [48, 49] which decomposes data into additive parts of the whole.

Low-dimensional generative models such as mixture of Gaussians [50, 51], auto-encoder

neural networks [52, 53] are able to both encode data into high-level features and decode

the features back into the original space. These methods are useful for the structural de-

composition of collections of HRTFs where methods for sampling and searching along

these low-dimensional representations are more efficient.

1.6 Organization

A brief summary of each chapter and their contributions are presented below:

Chapter 2: We present a GP model for localizing arbitrary sound-sources by a

human listener using prior knowledge of his/her HRTFs. The source-signal’s contents

are removed via cancellation of the left and right audio streams; the resulting features

are expressed as various ratios of the underlying HRTFs which are known a priori; the

21



features are used as predictors of the sound-source directions in GPR models. Two further

problems are proposed: First, we show how only a small-subset of features are relevant

for human-accurate localization over the entire spherical coordinate domain via greedy

forward selection methods [54]. Second, we formalize the HRTF recommendation system

into an active-learning [55] problem based on the application of GP localization models

for the global optimization of smooth functions [56]. Experiments with human and virtual

listeners show that the learned HRTFs are localized closer to their targeted directions than

non-individualized HRTF guesses.

Chapter 3: We present an efficient joint spatial-frequency covariance model for

HRTF interpolation via GPR. Model-order selection, generalization error, and compu-

tational concerns from section 1.3 are addressed: The GP model exploits a “gridded”

structure between the HRTF spherical-frequency input domains which allows the covari-

ance/Gram matrix to be factorized into Kronecker product matrices [57]. Asymptotic

complexity reductions from best-case cubic to linear runtime and quadratic to linear space

costs are obtained. The model generalizes to arbitrary input dimensions and for sparse-

GPR [58] methods. Extensions to HRTF spectral extrema extraction, treatment of miss-

ing/extra data, efficient feature subset-selection, and fast covariance function evaluations

via series expansions are made.

Chapter 4: We present a method for “fusing” same-subject HRTF datasets col-

lected by separate labs over different measurement grids in a GP setting based on chapter

3. This is motivated by a need for larger training datasets and the observation that same-

subject HRTFs collected by different labs exhibit large variations. A data fusion metric

using GP log-marginal likelihoods is derived. Two data transformations that capture the
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inter-lab variations are learned which allow for inter-lab HRTFs belonging to different

subjects to be compared.

Chapter 5: We present an efficient numerical method for relating left and right ear

HRIRs in terms of time-delayed reflections based on a non-negative least squares (NNLS)

formulation [59] of a linear Toeplitz system of equations. The NNLS method is an active-

set variable selection method that we accelerate via efficient QR matrix updating and

downdating operations. The algorithm is then parallelized for multi-core architectures

(CPU and GPU) using OpenMP [60] and CUDA [61].

Chapter 6: We present a fast convolution method based on a sparse representation

of HRIRs motivated in section 1.4. We extend a well-known non-negative matrix fac-

torization method [49] to Toeplitz constrained matrices where a collection of HRIRs that

belong to the same subject is factorized into convolutions between direction-independent

and direction-dependent components. The latter direction-dependent components are

non-negative and can be tuned for sparsity at a cost of reconstruction accuracy of the

original HRIR. Convolutions between arbitrary signals and our HRIR representation in

the time-domain are shown to be more efficient than fast Fourier transform (FFT) based

convolutions.

Chapter 7: Conclusions are made and several open problems are discussed.
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Chapter 2: Gaussian Process Models for Sound-Source Localization and

Active-Learning

2.1 Introduction

Many animals possess a remarkable omnidirectional sound localization ability enabled

by subconsciously processing subtle features in the sounds received at the two ears from

a common source location. For humans, these features arise due to the incoming acoustic

wave scattering off the listener’s anatomical features (head, torso, pinnae) before reaching

the eardrum. The spectral ratio between the sounds recorded at the eardrum and that

would have been obtained at the center of the head in absence of the listener is known as

the head-related transfer function (HRTF) [7]; HRTFs are thus specific to the individual’s

anthropometry, wave direction, and contain other important cues such as the interaural

time delay (ITD) and the interaural level difference (ILD) [24]. Moreover, knowledge of

individualized HRTFs allow for perceptually accurate 3D spatial audio synthesis [62–64].

We investigate the pre-image problem, namely how pairs of left and right ear HRTFs

and functions of HRTFs (features based on them) map back to their measurement direc-

tions. This is related to the problem of sound-source localization (SSL) where under

simple (anechoic) conditions, the direction of an acoustic event can be inferred from
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multi-receiver recordings of the sound spectrum by expressing the spectral cues solely in

terms of the receiver’s transfer functions (independent of their actual content). This is of

interest in robot perception (e.g. for event detection and localization [65, 66]), where the

receiver’s transfer functions can be measured beforehand. For humans, this problem is

restricted to two receivers (human ears) where functions of left and right pairs of HRTFs

are mapped to their measurement directions in place of SSL directions. Thus, it possible

to model this relation as either a classification or a regression problem between the two

domains. Many works in literature have attempted similar tasks.

2.1.1 Prior Works

Cue-mapping [67] uses ITD, ILD, and interaural envelope difference features paired with

azimuth directions in a weighted kernel nearest-neighbor (NN) setting. A linear mapping

between ITD, ILD, and HRTF notch frequency features to spherical coordinates can be

learned [65]. A self-organizing map between input ITD, spectral notches features and

output horizontal and median plane coordinates can be trained [68]. Conditional proba-

bility maps derived from per-frequency ITD and ILD can be used to estimate direction via

a maximum a posteriori estimator [69]. A probabilistic affine regression model between

interaural transfer functions and the direction is possible [70].

Most closely related to our work are the source-cancellation and match-filtering al-

gorithms [71–74], where the binaural recordings (SL left, SR right ears) are represented as

convolutions of a common sound-source signal S and the appropriate filters; for recording

done in an anechoic space, these filters are the same-direction HRTFs (HL left, HR right
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ears). The per-frequency domain representation is given by

SL = HL ◦ S, SR = HR ◦ S, (2.1)

where ◦ is element-wise product. The source-signal S is removed by computing the ratio

between left and right channel recordings (SL
SR

= HL
HR

). These binaural features, which are

reduced to ratios of HRTFs, can be compared to those pre-computed from the subject’s

collection of measured HRTFs; the measurement direction belonging to the maximally

cross-correlated pair is reported as the sound-source direction. Such an approach can be

interpreted as a nearest neighbor (NN) classifier where the binaural features and measure-

ment directions are single class instances and labels respectively.

2.1.2 Present Work

We propose a generalization of the match-filtering algorithm that addresses several defi-

ciencies: While an NN classifier is accurate for a large number of training samples, it does

not report out-of-sample spatial directions unless specified in a regression context. Lin-

ear regression methods via ordinary least squares (OLS) regressors1 often perform poorly

due to inaccurate assumptions on the model complexity (number of parameters) and the

linearity between predictors and outputs. Common issues include over-fitting the model

to noise that arise from parametric OLS methods and under-fitting the training data from

assumptions of linearity. Instead, we adopt a non-linear and non-parametric2 Gaussian

1y = xTβ, β =
(
XTX

)−1
XTY , for parameters β

2Number of parameters is proportional to the number of data samples conditioned upon for inference.
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process (GP) regression (GPR) [46] framework to address these issues.

GPR is a kernel method3 that places weak assumptions on the joint probability dis-

tribution4 of latent function realizations that would model the output observations (spa-

tial directions) in a Bayesian setting. Observations are drawn (realized) from a high-

dimensional normal distribution that represents the joint probability density function of

a collection of random variables indexed by their predictor variables. GPs have several

attractive properties that are well-suited for SSL.

Based on the observation that HRTFs corresponding to different spatial directions

covary smoothly with the considered binaural features (see sections 2.3), we show they

can be modeled via simple stationary GP covariance functions (see section 2.4). The GP

Bayesian formulation allows for the choice of the covariance function, which governs

the smoothness between realizations at nearby predictors, to be automatically selected

by evaluating a data marginal-likelihood criterion (goodness-of-fit); covariance functions

belong to a function class and are specified by their “hyperparameters” (parameters that

describe distributions). This allows the covariance function hyperparameters to be learned

without the need for cross-validation and provides insights as to the intrinsic dimension-

ality of the high-dimensional feature space that the binaural features are mapped to. Most

importantly, uncertainties in GP prediction are well-defined in terms of both prior and pos-

terior distributions; the predicted variances at different inputs are tractable. Thus, GPR

generalizes NN classifiers as it makes non-linear inferences to observations outside the

training set. By the representer theorem, kernel methods such as support vector regression

3Predictor variables are implicitly mapped to a reproducing kernel Hilbert space whose inner products
are taken to be evaluations of a valid Mercer kernel or covariance function.

4Normal distribution defined by prior mean and covariance functions of predictor variables (binaural
features).

27



(SVR) [45] and GPR make predictions expressible as linear combinations of non-linear

covariance evaluations between the training features/observations and the test features.

In general, GPs perform better (make accurate inferences) with more observations

(data) than other non-linear regression methods that do not encode and select for prior

data-assumptions. The trade-off is its high computational costs (O (N3) operations for

N number of observations) for both model-selection and inference; scaling GPs for for

large datasets is an active field of research. Fortunately, the availability of high quality

datasets, computational resources, and faster algorithmic formulations have allowed us to

overcome these problems. In previous works, we have used several properties of HRTF

datasets to to perform fast GP based HRTF interpolation [18] and data-fusion [19]. The

current work is a major extension of our recent work on binaural SSL [21]. For future

references, we refer to GPs that predict SSL directions as GP-SSL models (see section

2.4 for a complete derivation).

2.2 Formulation of Problems

This work investigates two problems related to GP-SSL models (see Fig. 2.1 ). For

notation, we refer to a binaural feature as a D-dimensional vector x ∈ RD (D is number

of frequency bins), the measurement direction as the unit vector y ∈ RM (M = 3 for the

standard Cartesian basis), and collections of the aforementioned quantities (N number

of samples) as concatenated into matrices X ∈ RN×D and Y ∈ RN×M . The binaural

features are independent of the sound-source content and thus strictly functions of the

subject’s HRTFs (see section 2.3). GP-SSL models are thereby specified and trained over
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known HRTFs and measurement directions belonging to CIPIC [1] database subjects.

Binaural HRTF Features: Sound-source 
invariant features 

Gaussian Process (GP):  
Kernel Bayesian regression 

with trainable priors 

Incremental GP: 
Rank-1 updates to 
covariance models 

Sound Source 
Localization: HRTF 
features  predict 

localization direction 

Active Learning:  
Maximize expected 

improvement in 
localization error 

Generative Model: 
Model joint 

distributions (HRTF, 
measurement 

direction) 

Greedy Forward 
Subset Selection: 

Minimize risk function 
criterions 

Figure 2.1: Gaussian Process Regression with binaural features (bottom two boxes) to
perform two types of inferences. On the left are shown the steps needed to perform sound-
source localization. On the right is shown an active-learning framework that combines
SSL with listening tests to learn a listener’s HRTFs.

2.2.1 Feature subset-selection

Subset-selection for non-parametric methods such as NN and GPR is an important tech-

nique for reducing the model-order complexity and run-time costs for inference. SSL

models that are trained with randomized subsets of samples trade measurement and pre-

diction costs for localization accuracy. Increasing the density of measurement samples
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over the spherical grid results in a linear increase to both NN classification computational

cost and accuracy, a quadratic and cubic increase to respective GP inference and training

computational costs, and a non-linear increase to GP localization accuracy. We show how

GP-SSL models using small and non-uniform subset-selected samples (which are most

informative) make more accurate predictions over the full spherical grid than models ev-

idenced on a randomized subset.

A simple greedy forward-selection (GFS) algorithm [54] that sequentially incor-

porates training samples into a subset without considerations in future iterations is im-

plemented. It ranks all training samples outside the subset via a user-defined objective

function (risk function) and adds the minimizer into the subset. We propose a class of

risk functions that generalizes the GP prediction errors and show that the subset-selected

GP-SSL models localize directions more accurately than models evidenced on random-

ized inputs (see section 2.5); only a small fraction of training samples are required for

reasonable accuracy (5◦).

2.2.2 Active-learning for individualizing HRTFs

Individualized HRTFs are needed for synthesizing accurate spatial audio that resolve

front-back and up-down directional confusion [62–64]. Due to the difficulties of directly

measuring HRTFs [30], a number of works have sought indirect means for learning the

subject’s HRTFs: regression models between the individual’s physically measured an-

thropometry and his/her HRTFs can be learned via neural-network [32] and multiple non-

linear regression models [31] but do not generalize well to test subjects. HRTFs can also
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be learned through listening tests [33,75] by having an individual listen to a query HRTF x

convolved with white Gaussian noise (WGN) (heard over a pair of headphones), localize

the test signal (report a direction v ∈ R3), and then hand-tune the spectra of x or choose a

new x out of a large candidate pool over a graphical user interface (GUI) as to move subse-

quent localizations towards a target direction u ∈ R3. The hand-tuning/selection step can

be replaced by developing a recommendation system that selects for the query HRTF be-

tween rounds (steps) of localization. The listener can rank candidate HRTFs chosen from

a genetic algorithm5 [34]. HRTFs can also be tuned along a low-dimensional autoencoder

space [20] where u is unknown to the listener.

We propose to formulate the recommendation problem in an active-learning [55]

context described as follows: given a finite set of candidate HRTFs XC sampled from a

prior distribution (database or generative model), determine the HRTF from the XC that

the listener would localize nearest to u within T rounds of localizations. During round t ≤

T , the recommender selects a query x that the listener labels as vt(x) without knowledge

of u. The choice of x is referred to as the query-selection problem of minimizing the SSL

error (SSLE) (modified cosine distance) given by

SSLE(u, vt(x)) = −uTvt(x), arg min
x∈XC

SSLE (u, vt(x)) . (2.2)

Unfortunately, the minimizer in Eq. 2.2 is unlikely to be found within T rounds as

XC can be large and T must also be small as the cost of evaluating SSLE by the listener

is high. It is more reasonable to model the SSLE function using an online regression

5Evaluates a fitness function w.r.t. localization accuracy of known u
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model (adapting HRTFs predictors of SSLEs after each round) and select for x based on

two competing strategies: query-selection exploits the online model by choosing x that

the model predicts will have low SSLE and explores x that has high model uncertainty in

its prediction; both concepts are trade-offs that require probabilistic treatments of model

predictions. Fortunately, GPs are well-suited to this task as all predictions are expressed

as probabilistic realizations sampled from normal distributions. Thus, we propose to solve

the modeling problem via GP-SSLEs6, and the query-selection problem using a method

of GPs for the global optimization of smooth functions [56, 76] (see section 2.6). The

relation between these methods and the GP-SSL models is also shown.

2.3 Binaural Sound-Source Invariant Features

We consider several sound-source invariant features that can be extracted from short-time

Fourier transforms of the left and right ear input channel streams in Eq. 2.1 (see Table

2.1 and Fig. 2.2); it is useful to express the discrete Fourier transformed signals by their

magnitude and phase representations where H(jω) = |H(jω)| ej∠H(jω). The features are

expressed as ratios between left and right ear channel recordings that remove the effects

of the acoustic content in S; the remainder is strictly a per-frequency function of same-

direction left and right ear HRTFs derived as follows:

Table 2.1: HRTF sound-source invariant features X
log
(∣∣∣SLSR ∣∣∣+ 1

)
= log

(
|HL|
|HR|

+ 1
)

Log-magnitude ratio

∠SL
SR

= ∠HL − ∠HR Phase difference
|SL|

0.5(|SL|+|SR|)
= 2|HL|
|HL|+|HR|

Avg. magnitude ratio
{|SL| , |SR|} = {|HL| , |HR|} Magnitude pairs for flat S

6GPs that predict the SSLE from HRTFs
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Log-magnitude ratio (LMR) [71]: While the source-cancellation method removes

the dependence on signal S, the resulting features are complex, noisy, and difficult to

interpret. This can be avoided by considering the magnitude representation which gives

the relative per-frequency energy between the channel signals. Adding a constant to the

ratio prior to the log-transform penalizes the magnitude of the perturbation; adding a

constant 1 constrains the log-transform to be non-negative.

Phase difference (PD): Similarly, the per-frequency phase of the complex chan-

nel signal ratio can be expressed by the phase-difference between left and right HRTFs.

For identical SL, SR that differ by onset time-delays ∆L,∆R, the phase-difference is sim-

ply the constant delay ∆L − ∆R across all frequencies; this ITD can be related to az-

imuth angles via Woodworth’s model [2]. For arbitrary SL, SR, the per-frequency phase-

differences differ and are to be treated as independent variables in regression models.

Average magnitude ratio (AMR): The magnitude source-signal |S| can also be

removed by taking the ratio of left or right magnitude signals |SL|, |SR| and the binaural

average (|SL|+ |SR|)/2. Without the constant factor, the feature can be interpreted as the

per-frequency contribution of the left or right magnitude HRTFs to the additive binaural

magnitude response. Unlike log-magnitude ratio features that approaches a singularity as

|HR| → 0, these features are bounded in the interval [0, 2) and finite everywhere unless

the binaural average is zero.

Magnitude pairs (MP): The magnitude pairs are the concatenation of the original

left and right magnitude HRTFs that could be derived from convolution with a WGN

S with zero mean and unit variance. The power spectrum of |S|2 is constant across

all frequencies and so |SL|, |SR| would be constant factors of magnitude HRTFs. Such
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conditions arise during listening tests where the source-signal S can be specified; the

test features can then be derived from per-frequency division given by HL = SL/S and

HR = SR/S.

Figure 2.2: Binaural features extracted from CIPIC subject 156 HRTFs are shown for
horizontal and median plane directions.

2.4 Gaussian Process Regression for SSL

In a general regression problem, one predicts a scalar target variable y from an input vec-

tor x of independent variables based on a collection of available observations. A common

Bayesian approach for inference assumes that the observation y is generated (realized)

from a latent function f(x) given by

y = f(x) + ε, ε ∼ N (0, σ2), (2.3)
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which is corrupted by additive Gaussian white noise with zero mean and constant variance

σ2. This latent function is given the form of a kernel regression f(x) = φ(x)Tβ, β ∼

N (0,Σp) where the function φ(x) : RD → RD∗ maps the inputs x into a high-dimensional

space before computing the inner product with a vector of parameters realized from a

collection of random variables with a prior multivariate normal distribution β ∈ RD∗ .

Unlike linear regression, the parameters β are not explicitly found in order to perform

inference but are marginalized in order to compute the first two moments (mean and

covariance) of function f(x) given by

E (f(x)) = φ(x)TE (β) = 0,

E (f(x)f(x′)) = φ(x)TE
(
ββT

)
φ(x′) = φ(x)TΣpφ(x′).

(2.4)

The latent function realizations f(x) are thus drawn from a multivariate normal distribu-

tion with mean µ(x) = 0 and variance k(x, x′) = φ(x)TΣpφ(x′). For Σp = I , the inner

product can be replaced with the covariance function k(x, x′) = φ(x)Tφ(x′) which GPs

generalize as follows:

A GP f is a collection of random variables where any finite subset indexed at N

inputs X = [x1, . . . , xN ] has the joint multivariate normal distribution given by

[f(x1), . . . , f(xN)] ∼ N (µ(X), K(X,X)), (2.5)

and thus fully defined by the prior mean function µ(x) and the prior covariance function

k(x, x′). The prior mean function and vector µ(X) ∈ RN are set to zero without loss

of generality following Eq. 2.4. The covariance (Gram) matrix K(X,X) ∈ RN×N is
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characterized by the pairwise covariance function evaluations Kij = k(xi, xj); the covari-

ance function is a positive semi-definite kernel (Mercer’s condition) that establishes the

existence of the eigenfunction φ(x). This allows kernel methods such as SVR and GPR to

omit computing the exact mapping φ as the inner products in the high-dimensional space,

representing the similarity measure between input features x, x′, are well-defined.

GP inference at test inputs X∗ ∈ RN∗×D evidenced on training inputs X and the

observations in Y ∈ RN derives from the multivariate normal distribution of random

variables f∗ = f(X∗) conditioned on f(X) = Y , X . This is given by

f∗|X, Y,X∗ ∼ N (f̄∗, Σ̄∗), f̄∗ = KT
f∗K̂

−1Y,

Σ̄∗ = K∗∗ −KT
f∗K̂

−1Kf∗,

(2.6)

where K̂ = K(X,X) + σ2I adjusts for the observation noise and Kf∗ = K(X,X∗) ∈

RN×N∗ are pair-wise covariance evaluations between training and test inputs. We refer to

the distribution in Eq. 2.6 as the posterior GP defined by the posterior mean and posterior

covariance functions f̄∗ and Σ̄∗ respectively. The former represents the vector of expected

outputs (prediction) at X∗ and the latter is gives the confidence intervals (diagonal of the

matrix) of the predictions.

For the GP-SSL model, X and Y ∈ RN×3 are the respective binaural features in

Table. 2.1 and their measurement directions (unit vectors where Yi = Y:,i are values along

the ith coordinate); test inputs X∗ refer to the binaural features extracted from test sig-

nals. While it is possible to model all M = 3 output coordinates as a collection of M

independent GPs f1:M(X) = {f1(X), . . . fM(X)}, a computationally cheaper alternative
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is to specify a common prior mean and covariance function shared by all GPs. Speci-

fying a shared covariance model between GPs is reasonable as the original HRTFs are

originally measured over the same physical topology of a human subject from a near-

uniform spherical grid of directions. Thus for inference, we use three independent GPs,

with shared priors, to model left-right, front-back, and top-down coordinate directions by

either sampling from their posterior distribution or reporting their posterior means.

2.4.1 Choice of Covariance Functions

The “smoothness/correlatedness” of realizations of f(X) for similar X depends on the

number of times that the covariance function is differentiable w.r.t. the input arguments.

Consider the Matérn class of covariance functions where each function has varying orders

of differentiation. For D-dimensional inputs, we can specify the GP covariance function

as the product of D-independent Matérn covariance functions of identical class. Three

common classes and the product covariance function are given as

K 1
2
(r, `) = e−

r
` , K 3

2
(r, `) =

(
1 +

√
3r

`

)
e−
√

3r
` ,

K∞(r, `) = e−
r2

2`2 , K(x, x′) = α2

D∏
k=1

Kν(|xk − x′k|, `k),
(2.7)

for distance r and hyperparameters α, `k. Covariance functions Kν are bνc times differ-

entiable and stationary due to their dependence on |xk − x′k|. Each function contains a

length-scale or bandwidth hyperparameter `k that represents a distance in the domain xk

where outputs f(xk) remain correlated; larger length-scales result in smoother f .

A general hyperparameter Θ is optimized by maximizing the data log-marginal
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likelihood (LMH) of the observations Y given the GP prior distributions; the derivation

follows from integrating over the realizations f(X) by the product of data likelihoods

(sampling Y from f(X) + ε and sampling f(X) from the GP prior distribution). The

LMH term L = log p(Y |X) and its partial derivative are both analytic and given by

L = −M
2

log |K̂|+
tr
(
Y T K̂−1Y

)
M

+N log(2π)

 ,

∂L

∂Θi

= −M
2

tr
(
K̂−1P

)
−

tr
(
Y T K̂−1PK̂−1Y

)
M

 ,

(2.8)

where P = ∂K̂/∂Θ is the matrix of partial derivatives. A larger LMH represents a better

goodness-of-fit of the data to the GP prior mean and covariances assumptions. Moreover,

different covariance functions with optimized hyperparameters can be compared in this

respect without resorting to domain-specific metrics.

2.4.2 Model-Order and Cost Analysis

The GP model-order is proportional to the size of the GP prior distribution defined by the

N -dimensional multivariate normal distribution in Eq. 2.5 (N is the number of training

samples). The associated costs of both conditioning on the GP prior distribution for infer-

ence and performing hyperparameter training is dominated by the inversion of the Gram

matrix (O (N3) operations to compute and O (N2) space to store). For large N , exact GP

becomes intractable and most practitioners rely on randomized sampling techniques [77]

to reduce the costs at the expense of accuracy. Two types of analyses for evaluating this

trade-off are given: first, empirical cross-validation experiments can demonstrate how
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data sampling (randomized and subset-selection) increases localization error. Second, the

theoretical dimensionality of the feature space φ(x) in Eq. 2.3, despite not having been

explicitly computed, can be estimated from an eigenanalysis of the GP Gram matrix. The

distribution of eigenvalues (number of dominant ones) gives a minimum bound as to the

number of input features whose mapping will contain most of the variances in the feature

space.

To evaluate the dimensionality of φ(x), we refer to the method of kernel principal

component analysis [78] of Gram matrix K. Its derivation expresses the eigenvectors v

(principal directions) and eigenvalues λ (measure of variance captured by v) of the sample

covariance matrix C̃ of features φ(x) in the high-dimensional space in the form of

C̃ =
1

N

N∑
i=1

φ(xi)φ(xi)T , C̃v = λv, v =

∑N
i=1 αiφ(xi)
λN

, (2.9)

where αi = φ(xi)Tv are the component scores between the feature mapping and the

eigenvector. Applying the “kernel” trick allows α to be reformulated in terms of the

Gram matrix K as a tractable eigendecomposition problem given by

N∑
j=1

λαj =
N∑
j=1

φ(xj)T C̃v =
1

N

N∑
j=1

N∑
i=1

αjKij,

Kij = φ(xi)Tφ(xj), Kα = λNα,

(2.10)

which finds the eigenvalues λ and scores α. Evaluating the contributions of the leading λ

to the total energy
∑N

i=1 λi estimates the number of eigenvectors that are relevant to φ(x).
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2.4.3 Experiments

GP-SSL models (input binaural features LMR, PD, AMR, and MP from Table. 2.1 be-

longing to CIPIC subject 156) are trained (batch gradient descent of all covariance func-

tion hyperparameters `k via Eq. 2.8) for 50 iterations. For a domain-metric, we use the

angular separation distance between two directions u, u’ (predicted and reference direc-

tions) given by

dist (u,u’) = cos−1 < u,u’ >
||u||||u’||

, u,u’ ∈ R3. (2.11)

Goodness-of-fit: GP-SSL models are specified/trained on the full set of inputs X .

The data LMHs in Table. 2.2 are computed for several covariance functions and feature

types. The infinitely differentiable squared exponential K∞ gives the best-fit (highest

LMH) across all features (latent functions modeling the SSL directions are smooth w.r.t.

changes in the feature space). This confirms the fact that a finite collection of HRTFs

approximates a sound-pressure field that is continuous in space. The best-fitting binaural

features are the MPs (WGN sound-source) and AMRs (arbitrary sound-source); the LMH

gap between the two suggest that GP-SSL models will perform more accurately when the

recorded magnitude spectra match that of the HRTFs. The LMH gap between AMR and

LMR suggests that relative contribution may be a better indicator of SSL than relative

intensities. The low LMH of PD models suggests that phase may not be useful for SSL

over the entire spherical coordinate system.

Eigenanaylsis of K: The eigenvalues of the K are computed for GP-SSL models
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Table 2.2: Data LMH for feature/GP covariance types
LMR PD AMR MP

K∞ 2.69e+003 2.37e+003 3.9e+003 6.34e+003
K3/2 2.23e+003 1.5e+003 3.88e+003 6.29e+003
K1/2 2.06e+003 460 2.24e+003 4.84e+003

trained/specified on the full dataset (N = 1250). Fig. 2.3 shows the contribution of the

leading eigenvalues to the total energy; K∞ specified by the four earlier features (LMR,

PD, AMR, and MP) require respectively 150, 30, 100, and 15 leading eigenvectors to

capture 90% of the total variance. The results suggest that feature mappings for MPs

and PDs can be approximated with only a few samples while LMR and AMR feature

mappings are more complex.
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Figure 2.3: Cumulative energy of leading eigenvalues for K are shown for GP-SSL mod-
els (varying covariance functions and feature types).

Cross-validation: GP-SSL models are trained on a randomized third of the avail-

able feature-direction pairs (N = 417 out of 1250); inference follows Eq. 2.6 at all

available inputs (X∗ = X) where only the posterior mean directions are reported. Table
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Table 2.3: Mean angular separation errors (degrees) for feature/methods
LMR PD AMR MP

OLS 29 27 22 5.4
NN 9.2 20 7.9 3.9

GP-SSL K1/2 7.2 12 7 1.8
GP-SSL K3/2 7.5 11 4.8 1.4
GP-SSL K∞ 6.3 6.3 4.8 1.3

2.3 shows the mean angular separation (Eq. 2.11) between predicted and reference direc-

tions for GP-SSL, NN classifier, OLS methods trained on the same data. Non-parametric

methods (NN and GPR) outperform parametric methods (OLS) across all feature types.

The MP and AMR features give the lowest errors across all methods (for a visual, see the

first column of Fig. 2.4). OLS log-ratios perform the worse and suggest that the features

are oversensitive linear predictors of change in localization direction. PD features, while

useful for predictions on the horizontal plane, are insufficient for localizations over the

full sphere.
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Figure 2.4: Mercator projections of GP-SSL K∞ predicted mean directions evidenced on
randomized and subset-selected inputs (prediction error risk function R in section 2.5.2
are shown.
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2.5 Feature Subset-Selection

Greedy feature selection is an efficient method for finding a subset of inputs Xr ∈ X that

best approximates a functional f(Xr) ≈ f(X) according to a user-specified risk function

R(Xr) (measure of distance between f(Xr) and f(X)). Determining the optimal subset

via an combinatorial exhaustive search is prohibitive w.r.t. the number of evaluations of

R. A greedy heuristic (ranking Xr̂ 6∈r according to a point-inclusion in the risk evaluation

R(Xr̂∪r) and adding the minimizer into the subset Xr without consideration in future

iterations) reduces the search to a quadratic number of evaluations (see Algorithm 1).

For GP-SSL, GFS approximates the GP posterior distribution (Eq. 2.6) evaluated on the

full dataset (X∗ = X) conditioned on a growing subset Xr̂∪r of inputs. We propose an

efficient method for updating both GP prior and posterior distributions between point-

inclusions in section 2.5.1.

Algorithm 1 Greedy Forward Selection
Require: Training inputs X, y, subset size T , and risk function R(X).

1: r ← ∅ \\ Initial empty subset at iteration t = 0
2: for t = 1 to T do
3: r ← {r, arg minr̂ 6∈r R (Xr̂∪r)} \\Minimize risk
4: end for
5: return r

Specifying the risk function R is more difficult as its evaluation costs must be low.

Most risk functions that use second-order moments (e.g. GP posterior covariance in Eq.

2.6) are expensive and require approximations to remain tractable [79]. Evaluating the GP

posterior covariance requires O (N2
∗ ) space; its inverse and determinants are expensive to

compute in sub-cubic time. Instead, we propose a cheaper class of risk functions that
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generalizes only the first-order moments (i.e. GP posterior mean in Eq. 2.6) in section

2.5.2.

2.5.1 Incremental GP Models

A point-update to a GP model can be defined in terms of changes to the first/second mo-

ments of the GP prior and posterior distributions (Eqs. 2.5, 2.6) and both the Gram matrix

K(r) = K(Xr, Xr) and its inverseK−1
(r) generated from inputs inXr. While a point-update

toK(r̂∪r) simply contains an appended row and column of covariance function evaluations

[K(Xr, xr̂), K(xr̂, xr̂)], its direct inverse K−1
(r̂∪r) would be expensive to compute. Instead,

we define a recurrence relation with its previous inverse K−1
(r) as follows.

Given a sample input-output pair (xr̂, yr̂) for data index r̂, let indices r̆ = r ∪ r̂

be the union with the subset indices r. At iteration t, append a row and column vector

along the standard basis to the Gram matrix K(r). The differences between K(r̆) and the

appended K(r) are two rank-1 updates given by

K(r̆) =

 K(r) krr̂

kTrr̂ kr̂r̂

 =

 K(r) 0

0 1

− uuT + vvT ,

krr̂ = K(Xr, Xr̂), kr̂r̂ = K(Xr̂, Xr̂) + σ2,

(2.12)

where vectors u =
√
||w||

2

(
w
||w|| + et

)
, v =

√
||w||

2

(
w
||w|| − et

)
, w =

[
−kTrr̂,

1−kr̂r̂
2

]T
, and

et is the tth column of the identity matrix. The update in Eq. 2.12 allows K−1
(r̆) to follow
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from the modified Woodbury formulation [80] given by

K−1
(r̆) = K̄−1 + duūū

T − dvv̄v̄T , K̄−1 =

 K−1
(r) 0

0 1

 ,
ū = K̄−1u, du = (1− < ū, u >)−1 ,

v̄ =
(
K̄−1 + duūū

T
)
v, dv = (1+ < v̄, v >)−1 ,

(2.13)

which requires only two rank-1 updates. For a fixed set of test inputs X∗, the updated

posterior mean vector remains a matrix-vector product and the posterior variances are

sums of diagonals given by

f̄∗r̆ = K∗r̆K
−1
(r̆)Yr̆, su = K∗r̆ū, sv = K∗r̆v̄,

diag
(
Σ̄∗r̆
)

= diag
(
Σ̄∗r + k∗r̂k

T
∗r̂ + dusus

T
u − dvsvsTv

)
,

(2.14)

where matrix K∗r̆ = K(X∗, Xr̆). The updated log-determinant is given by log
∣∣K(r̆)

∣∣ =

log
∣∣K̄∣∣− log dudv. The total computational costs of updating the GP prior and posterior

distributions at iteration t are O (t2) and O (N∗t) operations respectively.

2.5.2 GP L2 Risk Function Criterions

We show how several risk functions can be derived from the L2 distance between any

two GP posterior mean functions evaluated at a possibly infinite sized set of test inputs

X∗. Given two GPs fa, fb defined over the subsets of inputs Xa, Xb for indices a and

b, the L2 distance between their two GP posterior mean functions (f̄a = K∗aK̂
−1
a Ya

and f̄b = K∗bK̂
−1
b Yb) is analytic under certain GP prior assumptions. For prior mean
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m(x) = 0 and the product of identical Matérn class covariance functions in Eq. 2.7, the

errors evaluated at X∗ are given by

L2
X∗

(
f̄a, f̄b

)
=
∑
x∗∈X∗

(f̄a − f̄b)2

= zTaQaaza − 2zTaQabzb + zTb Qbbzb,

(2.15)

where vectors za = K̂−1
a Ya ∈ RNa , zb = K̂−1

b Yb ∈ RNb are computed over training

data. Updating the risk function evaluations between successive iterations t is efficient as

updating f̄a, f̄b need only rank-1 updates via Eq. 2.13. The associated matrices Qab, Qaa,

Qbb in Eq. 2.15 are sub-matrices of QXX and can be pre-computed in O (N2) operations.

Computing QXX depends on the following cases.

Finite Case: If X∗ is finite, then matrices Qaa =
∑

x∗∈X∗ Ka∗K∗a ∈ RNa×Na ,

Qab =
∑

x∗∈X∗ Ka∗K∗b ∈ RNa×Nb , and Qbb =
∑

x∗∈X∗ Kb∗K∗b ∈ RNb×Nb are the sum-

mation of outer-products whose i, jth entries are products of Matérn class covariance

functions in Eq. 2.7.

Infinite Case: If X∗ = (−∞,∞) is the full (unbounded) input domain, then

matrices Qaa =
∫∞
−∞Ka∗K∗adx∗ ∈ RNa×Na , Qab =

∫∞
−∞Ka∗K∗bdx∗ ∈ RNa×Nb , and

Qbb =
∫∞
−∞Kb∗K∗bdx∗ ∈ RNb×Nb contain improper integral entries. For a valid distance

measure, the posterior mean functions converge to identical zero-mean priors at the limits

x∗k → ±∞ and the improper integrals of the form Qaibj =
∏D

k=1 Fνijk given by

Fνijk =

∫ ∞
−∞

Kν(|xaik − x∗k|, `ak)Kν(|xbjk − x∗k|, `bk)dx∗k, (2.16)
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are shown to be finite (see Appendix Eq. 2.23). Several combinations of the L2 distance

are summarized as follows.

Prediction Error L2
X

(
f̄(r̆), y

)
: The prediction error is taken between the GP pos-

terior means f̄(r̆) at test inputs X∗ = X and the known sample pairs (X, Y ).

Generalized Error L2
X∗

(
f̄(r̆), f̄(X)

)
: The generalized error is taken between two

GP posterior mean functions f̄(a) and f̄(b) evaluated at any finite X∗ (may be out-of-

sample from X). For GFS, the two GPs are specified by subset-selected a = (r̆) and the

full set of inputs b = (X).

Normalized Error L2
(−∞,∞)

(
f̄(r̆)

‖f̄(r̆)‖ ,
f̄(X)

‖f̄(X)‖

)
: The normalized error or ”frequen-

tist“ risk is taken between two normalized GP posterior mean functions ( f̄(a)

‖f̄(a)‖ and f̄(b)

‖f̄(b)‖ )

evaluated at X∗ = (−∞,∞) given uniform probability distribution over x∗. The norm

term ‖f‖ =
√∫∞

−∞ f(x)2dx is shown to be finite by setting either of the functions in Eq.

2.15 to zero. The two GPs are specified on subset-selected a = (r̆) and the full set of

inputs b = (X).

2.5.3 Experiments

GFS selects for increasing subset sizes until it contains the full dataset. At each iteration

t, the incremental GP-SSLK∞ model infers directions (posterior means) along test inputs

X∗ = X . The mean angular separation error (Eq. 2.11) between the predicted and the

reference measurement directions are computed and shown in Fig. 2.5; intercepts with

horizontal lines indicate subset sizes at 5◦ and 1◦ errors. The crossover points at the 5◦

error line (localization accuracy) are achieved for MP and AMR features at a small frac-
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tion of the total input set (approximately 50 and 150 feature-direction pairs); decreases

in localization error after 50 randomized samples becomes logarithmic with diminishing

returns. Moreover, GFS selected models generalize better than that of randomized selec-

tion in all but the PD features; a visual (second column plots in Fig. 2.4) shows that the

former more accurately localizes directions further from the median plane.
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Figure 2.5: Generalization errors are shown for GP-SSL models evidenced on randomized
(dotted) and GFS [prediction error (solid), normalized error (dashed)] selected subsets of
feature-direction pairs.

2.6 Active-Learner System

The active-learning process for inferring HRTFs is as follows. The collection of p number

of target directions is specified as u ∈ U ∈ R3×p. For rounds t < T , a query HRTF (MP)

xt is chosen from the candidate set XC and appended to form input matrix X ∈ RT×D.

The listener localizes xt, registers the direction vt over a GUI (see Fig. 2.6), and appends

the directions to form matrix V ∈ R3×T . The SSLEs w.r.t. U are computed in Yut =

SSLE(u, vt) s.t. Y = −UTV ∈ Rp×T . Last, the updated feature-direction pairs (X, Y )

are added into the GP-SSLE models via incremental GPs (section 2.5.1). The system
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components are organized below.

Figure 2.6: GUI shows a mercator projection of spherical coordinate system onto 2D
panel. User clicks on panel to report a direction.

2.6.1 Conditional Mixture of Gaussians Models

While it is possible to specify an entire HRTF database as the candidate set, it is reason-

able to assume that most samples would not be localized near a target direction u; overt

features arising from the reflections off the anthropometry may be a physical impossi-

bility along all measurement directions. Conversely, choosing only HRTFs with mea-

surement directions equivalent to u restricts the sample size to the number of subjects in

the database. To address both issues, we model both the HRTFs and their corresponding

measurement directions using a conditional mixture of Gaussians model (MoG) trained

from the CIPIC database (see section 2.6.1). This allows for XC to be drawn from a

distribution of HRTFs conditioned at any direction u.

The MoG models the joint distribution between input variables as if the samples

are drawn from a latent set of normal distributions. The input variables consist of mea-
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surement directions u and leading principal components (PCs)7 w associated with HRTFs

along u. The joint distribution is modeled by a weighted sum of M normal distributions

with mean and covariances given by

z =

 w

u

 , µ =

 µw

µu

 , Σ =

 Σw Σwu

Σuw Σu

 ,
P (z) =

M∑
i=1

πiN
(
z|µ{i},Σ{i}

)
,

M∑
i=1

πi = 1,

(2.17)

where parameters µ, π,Σ are trained via the well-known expectation-maximization algo-

rithm. The PCs w conditioned on u is also a MoG given by

P (w|u) =
M∑
i=1

πiN
(

u|µ{i}u ,Σ
{i}
u

)
N
(

w|µ{i}w|u,Σ
{i}
w|u

)
∑M

j=1N
(

u|µ{j}u ,Σ
{j}
u

) , (2.18)

where the conditional mean and covariance for the ith mixture are µ{i}w|u = µ
{i}
w +Σ

{i}
wu Σ

{i}−1

u (u−

µ
{i}
u ) and Σ

{i}
w|u = Σ

{i}
w − Σ

{i}
wu Σ

{i}−1

u Σ
{i}T
wu respectively. The candidate set XC is given by

PCs randomly sampled from the conditional MoG8 in Eq. 2.18 and decoded into HRTFs

to form the candidate set. The non-individualized (directional-averaged) HRTFs are ap-

proximated by the sum of the weighted conditional mixture means.

7PCs are computed from same-subject, mean-centered, log-magnitude pairs (concatenated left and right
ear HRTFs).

8Leading 16 PCs are sampled (via Gibbs sampling) from one of M = 64 multivariate normal distribu-
tion (randomly selected by weight).
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2.6.2 GPs for Modeling SSLE

GP-SSLE models (f1:p(X) = {f1(X), . . . fp(X)}) are specified by a common set of

input MP features X and output SSLEs Y for each of the p number target directions in U .

Accurate modeling of the SSLE depends on the choice of GP prior mean and covariance

functions. A zero mean prior is reasonable as reported directions v in the absence of

localization should average to the zero vector. Choosing the GP covariance function is

more difficult as the hyperparameters cannot be optimized in the absence of observations;

inaccurate priors would result in poor generalizations error.

Fortunately, GP-SSLE models can be related to GP-SSL models when U is the

infinite set of target directions uniformly sampled over a unit sphere. Substituting the

SSLE labels Y = −UTV into Eq. 2.8, the GP-SSLE LMH is now given by

L = −1

2

(
|U | log |K̂|+ tr

(
QUUT

)
+ t|U | log(2π)

)
, (2.19)

where matrix Q = V K̂−1V T . As p → ∞, the sample covariance of U approaches a

constant variance UUT = 1
3
I due to symmetry. The LMH in Eq. 2.19 reduces to

LS = −|U |
2

(
log |K̂|+ tr (Q)

3
+ t log(2π)

)
, (2.20)

which is equivalent to that of GP-SSL models for MP features X and directions V .

The equivalence allows for the choice of the GP-SSLE model’s covariance function

to approximated by that of GP-SSL models trained over known feature-direction pairs
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(e.g. CIPIC subject data). While these subjects are not identical to the listener, the trained

GP-SSL models all share similar covariance functions as their hyperparameters are well-

distributed (see Fig. 2.7); high frequency bands above 17 kHz tend to be negligible while

lower frequency sub-bands between 0− 3 and 4− 7.5 kHz are relevant.

Figure 2.7: Distribution (box-plot) of hyperparameter values are shown for GP-SSL mod-
els (x-axis 0− 22.1 kHz frequency range). Large valued hyperparameters `k indicate less
sensitivity along the kth frequency.

2.6.3 Query-Selection

We present GP based query-selection as a modification of a known algorithm [56] which

is derived as follows. Consider the observed minimum SSLE for any u at round t given

by

ηut = min(Yu1, . . . , Yut). (2.21)

Realizations of SSLEs (γ = f(x∗|X, Y )) by the GP-SSLE posterior distribution (Eq. 2.6)

at a candidate input x∗ ∈ XC will be normally distributed whose mean and variances rep-

resent the expected SSLE and uncertainty respectively. Thus, improvements (lowering)
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upon the global minimum ηut is given by the loss-function λut(γ) = min(γ, ηut) whose

expectation can be computed via marginalizing over the γ.

The expected loss-function is analytic for any single u and so the weighted expected

loss function (specified over each u ∈ U with independent GP-SSLE models) is given by

∧(x∗) =
∑
u∈U

ρu

∫ ∞
−∞

λut(γ)N (γ|µ̄u, C̄u)dγ =
∑
u∈U

ρuWu,

Wu = ηut + (µ̄u − ηut)ψ(ηut|µ̄u, C̄u)− C̄uN (ηut|µ̄u, C̄u),

(2.22)

where weights ρu = 1/p can be set to a constant, GP-SSLE posterior mean and covariance

functions at x∗ evidenced with (X1:t,:, Yu,1:t) are denoted by µ̄u and C̄u, and the cumulative

normal distribution of C̄u is denoted by ψ. The query HRTF is chosen as the lowest scor-

ing candidate or minimizer argminx∗∈XC ∧ (x∗) of the criterion Eq. 2.22 which balances

local improvement through the posterior mean term (µ̄i − ηt) with exploring uncertain

predictions through the posterior variance term C̄u. The property is useful for proving the

rate of convergence [76] to the true solution in Eq. 2.2.

2.6.4 Experiments

GP-SSL active-learning trials: One method for fast and repeatable empirical validation

substitutes the human listener for GP-SSL models trained on CIPIC subject data. Local-

izations at x∗ can be reported as either the GP posterior mean directions, or by sampling

from the GP posterior distribution. This allows for large subsets of XC to be efficiently

evaluated with little time costs. For coherence, we limit the query-selection criterion in

Eq. 2.22 to single target directions u belonging to the CIPIC HRTF measurement direc-
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tions (queries made for past u are discarded). GP-SSLE’s covariance hyperparameters

are set to that of the GP-SSL mean hyperparameters (averaged across 45 subject models);

hyperparameters can be retrained after each round but is not necessary for improving the

localization error. The variance term is set to σ = 0.05.

In tests, the active-learner submits an initial non-individualized query HRTF for u

and then proceeds through T = 50 rounds of query-selection from a candidate HRTF set

of 20000 samples drawn from a conditional MoG (Eq. 2.18). The nearest localized di-

rections are shown to closer to their target directions than the non-individualized guesses

(see Fig. 2.8). Non-individualized HRTFs are localized closer to the horizontal plane and

towards the back of the head. Nearest localized directions accord with empirical stud-

ies of difficulties in front-back and up-down confusion with human subjects [63]. The

experiment is repeated across all 45 GP-SSL CIPIC subject models (see Fig. 2.9). The

improvement can be expressed as the mean ratio between the angular separation errors

of the initial and nearest localized directions. The mean improvement is 7.729 across all

CIPIC measurement directions, 9.139 for median plane directions, and 8.252 for horizon-

tal plane directions.

Human active-learning trials: For a human listener, we develop a simple GUI in

Matlab that consists of an azimuth-elevation plot that the subject clicks to report vt. To

introduce contrast in hearing, two test signals are alternatively played over headphones

until the listener reports a direction. The first is a short burst of WGN independently

generated for left and right ear channels. The second is the WGN convolved with the left

and right min-phase HRTFs derived from the binaural MP features. The trials proceed as

the listener localizes queries for T = 10 rounds in each of the 14 target directions (7 on
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Figure 2.8: Nearest localized directions after active-learning by the GP-SSL model (red)
improve upon initial non-individualized HRTF localizations (blue).

Figure 2.9: Mean angular errors are shown for the initial query (non-individualized
HRTFs) and nearest HRTF queries.

the horizontal and median planes each).

For 5 sample human listeners, the initial and nearest (minimum) localization errors

for each of the target direction are shown in Table 2.4 and are compared to synthetic

trials conducted with the 45 GP-SSL CIPIC subject models. In both cases, the largest

errors occur along the median plane direction θ = {−1.6,−0.69}. The mean percentage

improvements of the nearest localizations over that of the non-individualized HRTFs are

49% and 43% for human and GP-SSL listeners respectively. GP-SSL localization errors
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are generally lower and more consistent across all direction than the human listeners;

GP-SSL models can report a posterior mean direction whereas human listener exhibit

variances in his/her localizations, even for identical test signals. It may be of interest in

future work to both measure and model human localization variances via the GP-SSL’s

variance term σ and by sampling localizations from the GP posterior distribution.

Table 2.4: Active-learner: non-individualized and minimum horizontal φ and median θ
plane localization errors (degrees)

GP-SSL0 GP-SSLmin Human0 Humanmin

φ : −2.4 23.1± 15.8 12.6± 9.01 42.5± 35.6 16.4± 7.43
φ : −1.6 19.9± 12.1 10.4± 7.49 34± 14.4 5.98± 7.17
φ : −0.79 24.6± 16.7 7.45± 4.88 56.7± 17.5 28.8± 14
φ : 0.79 22± 16.2 7.87± 5.12 48.7± 18 21.5± 13.6
φ : 1.6 15.8± 9.38 6.63± 3.68 23.7± 10.6 10.8± 5.23
φ : 2.4 22.7± 14.7 13.2± 7.06 31.2± 11.6 14.9± 5.26
θ : −1.6 55.6± 26 37.1± 20.8 119± 43.3 59.8± 29.5
θ : −0.79 105± 44.9 37.9± 20.9 104± 37.3 61.8± 22.4
θ : 0 44.1± 44 11.6± 9.75 39.2± 22.1 23.3± 9.82
θ : 0.79 35.9± 23.2 15.8± 11.1 24.7± 12.3 15.3± 4.76
θ : 1.6 31.9± 18.4 15.6± 9.5 55± 23.1 30.2± 25.9
θ : 2.4 17.2± 14.8 10.8± 7.38 83.6± 56 24.3± 23.9
θ : 3.1 24.5± 19.6 12.6± 6.88 92.7± 68.1 11.9± 8.72
θ : 3.9 26.1± 17.1 8± 5.67 61.5± 42.7 18.6± 11.1

2.7 Conclusions

We developed a robust method for the SSL using sound-source invariant features derived

from left and right ear HRTF measurements. Our GP-SSL models generalized NN based

approaches and were shown to more accurate in both cases of randomized and subset-

selected features; good spatialization accuracy (5◦) over the full sphere was possible using

a fraction of the available features. For learning HRTFs in listening tests, we developed

an active-learning method for query-selection using GP models. Both simulations with

offline GP-SSL models and HRTFs recommended to real human listeners have shown

56



large improvement in localization accuracy over non-individualized HRTFs.

2.8 Appendix: Matérn Product Integrals

Improper integrals in Eq. 2.16 have closed-formulations:

F 1
2
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∣∣∣∣
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−
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Chapter 3: Fast Sparse and Gridded Gaussian Process Regression for

HRTF Interpolation

3.1 Introduction

Bayesian non-parametric kernel methods such as Gaussian processes (GPs) [46] have

successfully been used for many regression and classification problems. However, the

high computational costs of GP regression (GPR) presents a major bottleneck for learning

on large datasets. For N data points, naive GPR requires O (N3) operations and O (N2)

space due to inverting a large covariance (Gram) matrix or the equivalent of solving for a

large matrix system. This is problematic for both real-time inference and off-line training

phases where these operations must be repeated, often for an unspecified number of test

data and a large number of training samples.

Fortunately for some datasets (X, y) (input features, output observations), it is pos-

sible to design GP models to take advantage of structures inherent to its data organization.

For gridded datasets [81, 82], large computational savings are possible under the follow-

ing conditions: First, observations y are parameterized by D-dimensional inputs x ∈ X

where X = X1 ×X2 × . . . ×XD is the set of D-Cartesian outer products between sub-

sets Xi ∈ Rmi×∗ of mi elements each. Second, the GP covariance function has the form

58



of a tensor product kernel (TPK) K(xj, xk) =
∏D

i=1Ki(x
[i]
j , x

[i]
k ) where function Ki is

restricted to inputs belonging to the input subset Xi. These two conditions allow for the

covariance matrix to be expressed as Kronecker tensor products (KTPs) [57] given by

C = ⊗Di=1Ci and D-Kronecker factors Ci ∈ Rmi×mi for N =
∏D

i=1 mi number of in-

puts. The Kronecker product ⊗ is a binary operation between matrices A ∈ Rm×n and

B ∈ Rp×q that generates the block matrix given by

A⊗B =


a11B . . . a1nB

... . . . ...

am1 . . . amnB

 ∈ Rmp×nq. (3.1)

See Appendix 3.9.1 for a list of KTP identities.

Prior works have extended these TPK structured covariances for GP inference and

training, especially under noisy conditions (addition of a noise term to the model) [83].

The noise term manifests as diagonalized entries added to the covariance matrix which

violates the conditions for direct KTP decomposition; several works have proposed var-

ious treatments of this problem: For variable noise, an independent GP can be trained

to separately model the noise terms over separate inputs [84]. For constant white Gaus-

sian noise (WGN), low-rank approximations of the covariance matrix for low dimensions

(D = 2) can be computed [85]. The general case of isotropic WGN can be handled via

the “eigendecomposition trick” (GPR GRID algorithm [81]). Later works use this tech-

nique for efficient GP inference and hyperparameter training [86], [87]. We refer to these

algorithms collectively as “grid GPR” and introduce a number of extensions outlined be-
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low:

In Section 3.2.1, we establish notation and several matrix algorithms that use the

Kronecker structure. The formulation for grid GPR is derived in section 3.2.2 where the

costs of grid GPR inference and hyperparameter training (gradient evaluations) are greatly

reduced. In section 3.2.3, we remark on a connection between TPK covariances and mul-

tidimensional grids to Gaussian process latent variable models (GPLVM) [88]. GPLVM

is a method for dimensionality reduction that maps a lower dimensional latent space to

the original data constrained by a prior covariance function; learning the latent inputs can

be done by optimizing w.r.t. the data log-marginal likelihood (LMH) function. We show

that GPLVM’s LMH has a Kronecker product formulation where the unconstrained latent

inputs are mapped to a D = 2 grid. Generalizations to higher dimensions require the

additional constraint that the latent points also lie on a multidimensional grid.

In Section 3.3, we extend the TPK and multidimensional grid conditions to sparse

GPR methods [58]. Sparse GPR makes a tradeoff between computational costs and accu-

racy by making an additional assumption on the conditional independence of joint prior

random function evaluations given a small set of M inducing variables. Works such

as GPML [77] and SPGP/GPSTUFF [89] show that a GP spanned by a small num-

ber (M << N ) of these inducing inputs can often approximate the full GP at reduced

costs (inference and hyperparameter training require O (M2N) operations). We show

that greater computational gains are possible when the multidimensional grid and TPK

conditions are extended to both training and inducing inputs. Moreover, we address the

case where the sparsity assumption does not hold for all dimensions in the inducing in-

puts and show that some forms of the economical Gram matrix [58] have efficient KTP
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formulations.

In Sections 3.4 and 3.5, we present efficient methods for handling cases of missing

data inputs (holes in the multidimensional grid) and extra data (points outside a grid) re-

spectively. Since both cases marginally violate the gridded conditions, we show how GP

inference and hyperparameter training can remain both efficient and exact as if performed

using grid GPR with reduced costs. Furthermore, this relaxation generalizes standard

GPR with TPK covariances as any input set can be contained or appended from a multi-

dimensional grid that spans the Cartesian outer products between all unique inputs along

each input dimension.

In Section 3.6, we extend the method of greedy backward subset-selection (GBSS)

[54] to grid GPR for “ranking” input samples according to GP prior assumptions. GBSS

begins with a full set of inputs and iteratively eliminates input samples that minimizes/maximizes

a specified objective function; no input is considered twice after it has been eliminated.

For ranking, we are interested in finding the largest subset of samples that satisfy the GP

prior assumptions; we thus specify grid GP’s remaining data (samples not eliminated)

LMH as the objective function. Moreover, the formulation naturally extends our previous

result on the efficient handling of missing data in grid GPs as the eliminated samples are

equivalent to the missing data subset.

Last in Section 3.7, we perform a large array of experiments on both synthetic data

and real head-related impulse response/transfer functions (HRIR/HRTF)1 datasets2. Sec-

tion 3.7.1 demonstrates runtime gains on synthetic data for cases of variable input dimen-

1Magnitude HRTF responses can be mapped from a 2D multidimensional grid formed by a tensor prod-
uct between spherical coordinates and frequency domain inputs

2CIPIC database [1]
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sions and missing/extra inputs. Section 3.7.2 demonstrates runtime-to-accuracy trade-offs

for HRTF interpolation via grid and sparse-grid GPR methods compared to other spherical

interpolation methods from literature. Section 3.7.2.3 shows how further computational

gains can be achieved via series expansion methods demonstrated on a gridded spherical

domain. Section 3.7.2.4 shows how local features such as the HRTF spectral extrema

can be extracted. Section 3.7.3 applies subset-selection methods to the problem of in-

terpolating HRTF interaural time differences (ITDs) in the spherical coordinate domain.

Section 3.7.4 applies subset-selection methods to extracting a parsimonious set of inputs

for perceptually relevant reconstructions of missing HRTF measurements.

3.2 GPR Background

Formally, a GP is a collection of random variables f = [f(x1), f(x2), . . . , f(xN)] indexed

at X = [x1, x2, . . . , xN ] such that any finite subset is jointly Gaussian; realizations of

f generate a vector of random function values drawn from a N−variate Gaussian dis-

tribution. The distribution is specified by the GP prior mean m(x) = 0 (without loss

of generality) and covariance (cov) function K(xi, xj) between the function evaluations

f(xi), f(xj) in the form of

f(x) ∼ GP (m(x), K(xi, xj)), K(xi, xj) = cov (f(xi), f(xj)) . (3.2)

For the general regression problem, observations y are generated (realized) from a latent

function f(x) (treated as a random variable indexed on variables x), and corrupted by
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Gaussian white noise:

y = f(x) + ε, ε ∼ N (0, σ2), (3.3)

where the noise term ε is zero centered with constant variance σ2. For GP f(x) with prior

zero mean and covariance function K, the joint distribution between training outputs

f(x) + ε = y (at known input x) and the test output f∗ = f(x∗) (at input x∗) is given by

 y

f∗

 ∼ N
0,

 K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)


 ,

Kff = K(X,X), K̂ = Kff + σ2I,

Kf∗ = K(X,X∗), K∗∗ = K(X∗, X∗),

(3.4)

where X and X∗ are the collection of training and test inputs respectively. For inference,

the test output f(X∗) conditioned on f(X) = y (test input, training data, and training

inputs) is normally distributed P (f∗|X, y,X∗) ∼ N (f̄∗, cov (f∗)) with a predicted mean

(expectation) and predicted covariance (uncertainty) given by

f̄∗ = E[f∗|X, y,X∗] = KT
f∗K̂

−1y, cov (f∗) = K∗∗ −KT
f∗K̂

−1Kf∗. (3.5)

Thus, inference produces a posterior mean and posterior covariance at the test output f∗

which are fully specified by the covariance function K and training outputs y in Eq. 3.5

via the representer theorem.

The choice of the prior covariance functionK determines the “smoothness/correlatedness”
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of latent function realizations f(X) at nearbyX . For example, the infinitely differentiable

covariance function (w.r.t. x) such as the squared exponential k(xi, xj) = exp
(
− (xi−xj)2

2θ2

)
will generate very smooth functions f(X). The goodness-of-fit of observations y w.r.t.

the GP prior assumptions can be evaluated by marginalizing the data likelihoods (y from

f(x) + ε) and priors (realizations of f(x) drawn from the GP prior distribution) over all

possible realizations of f(x); this quantity is the so-called “data log-marginal likelihood”

(LMH) and obtains an analytic form that is useful for evaluating the selection of co-

variance functions. Moreover, covariance functions can be further characterized by their

hyperparameters (Θi) that describe their various qualities such as the function’s weight,

rate-of-decay to zero (eigenfunctions), and periodicity. As continuous values, hyperpa-

rameters can be optimized by maximizing the data LMH via hill-climbing methods such

as steepest ascent. Both the LMH and its partial derivative w.r.t. Θi are given by

log p(y|X) = −1

2

(
log |K̂|+ yT K̂−1y +N log(2π)

)
,

∂log p(y|X)

∂Θi

= −1

2

(
tr
(
K̂−1P

)
− yT K̂−1PK̂−1y

)
,

(3.6)

where matrix P = ∂K̂/∂Θi.

The overall computational complexity of GPs can thus be summarized by both the

cost of finding informative priors, namely model-order selection via covariance function

hyperparameter optimization (Eq. 3.6), and the cost of GP inference (Eq. 3.5). The

relevant linear algebra operations include the matrix inversion of K̂ (solving the matrix

system t = K̂−1y, tTPt), computing the matrix determinant log |K̂|, and computing the

trace term tr
(
K̂−1P

)
. The asymptotic costs are thus O (N3) operations and O (N2)
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space.

3.2.1 Kronecker Product Methods for GPR

Many linear algebra operations for Kronecker product matrices can be efficiently com-

puted as a result of its block structure (see appendix 3.9.1 for a list of properties). For

notation, we refer to covariance matrices Kf∗, Kff , K̂ from Eq. 3.4 as Cf∗, C, and Ĉ

respectively as to not be confused with the selection and evaluation of the covariance

function. Let the covariance matrix C and its partial derivative matrix P w.r.t. parameter

Θπ ∈ Kj have the D-KTP decompositions given by

C = C1 ⊗ C2 · · · ⊗ CD = ⊗Di=1Ci, P = ⊗j−1
i=1Ci ⊗

∂Cj
∂Θπ

⊗Dl=j+1 Cl, (3.7)

where⊗ follows from Eq. 3.1. Efficient methods for the eigendecomposition of aD-KTP

matrix, vector-Kronecker tensor product (VKTP) and Kronecker tensor-vector product

(KTVP) are presented as follows.

Eigendecomposition: The eigendecomposition of each real symmetric positive-

definite factor matrix is given by Ci = UiZiU
T
i , where matrices Ui and Zi, are the eigen-

vectors and the diagonal matrix of eigenvalues respectively. Let the partial derivative

factor matrix P have an analogous eigendecomposition given by ∂Cj/∂Θπ = VjWjV
T
j .

This decomposition allows the full matrix inverse C−1 and partial derivative matrix P

in Eq. 3.7 to be expressed as matrix products of KTP eigenvectors U and diagonalized
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eigenvalues Z (diagonal scaling) given by

U = ⊗Di=1Ui, Z = ⊗Di=1Zi, C−1 = UZ−1UT ,

V = ⊗j−1
i=1Ui ⊗ Vj ⊗Dl=j+1 Ul, W = ⊗j−1

i=1Zi ⊗Wj ⊗Dl=j+1 Zl, P = VWV T .

(3.8)

Thus, the costs of the eigendecomposition ofC are summed over the eigendecompositions

of individual Kronecker factor matrices Ci which require O
(∑D

i=1m
3
i

)
operations and

O
(∑D

i=1m
2
i

)
space. Both quantities are smaller than the costs of standard naive GPR

(O (N3) operations and O (N2) space where N =
∏D

i=1mi).

VKPT: A VKTP is the Kronecker product between D number of column-vectors

(each column belongs to a Kronecker factor) specified by D−dimensional KTP column-

indices q̄ ∈ ND; column index q̄i|1 ≤ q̄i ≤ mi refers to the q̄thi element in set Xi. The

notation may be used to parameterize (index) a scalar observation in y, or interchanged

with general column index notation q ∈ N where q|1 ≤ q ≤ N and xq = {x[1]
q̄1 , . . . , x

[D]
q̄D };

scalar index q parameterizes the qth observation yq (see Algorithms 7 and 8 in appendix

3.9.5 for converting between q and q̄). The VKTP and the diagonal of a KTP are given by

VKTP (X, xq ∈ X) = ⊗Di=1Ki(Xi, x
[i]
q̄i ), diag (C) = ⊗Di=1diag (Ci) , (3.9)

for the covariance evaluations Ki(Xi, x
[i]
q̄i ) between all elements in Xi and element x[i]

qi

which require O (N) operations and space.

KTVP: The generalized KTVP is the matrix-vector product between a rectangular

D-KTP matrix C = ⊗Di=1Ci ∈ Rmi×m̈i and the vector y ∈ RN̈ where N̈ =
∏D

i=1 m̈i. The

formulation is derived by first decomposing matrix C into D-matrix products of three
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KTPs given by

Mi =
i−1∏
j=1

mj, M̈i =
D∏

j=i+1

m̈j, C = ⊗Di=1Ci =
D∏
i=1

IMi
⊗ Ci ⊗ IM̈i

, (3.10)

and expressing vector y by its vectorization y = vec(Y ) (stacking the columns of a matrix

Y ). From Eq. 3.10, a single vectorized matrix-vector product is given by

(
(IMi

⊗ Ci)⊗ IM̈i

)
y = vec(Y (IMi

⊗ CT
i )), (3.11)

for matrix Y ∈ RM̈i×m̈iMi and block-diagonal matrix IMi
⊗CT

i . For standard GPR where

the covariance matrices Ci are square (mi = |Xi|, N =
∏D

i=1mi and mi = m̈i), com-

puting the block diagonal matrix-vector product in Eq. 3.11 requires O (miN) operations

making the total cost of a KTVP O
(
N
∑D

i=1 mi

)
operations and O

(
N +

∑D
i=1m

2
i

)
space. For rectangular covariance matrix C ∈ RN×N̈ , the KTVP equivalent method [81]

is easily modified by updating the number of entries after each matrix-vector product in

Algorithm 2 where the ratio between covariance sizes ρj = mj/m̈j factors into the total

cost given by O
(
N̈
∑D

i=1 mi

∏D
j=i+1 ρj

)
operations. This is used in our extension of grid

conditions to sparse-grid GPR methods.

3.2.2 Grid GPR and Cost Analysis

The multidimensional gridded inputs and TPK assumptions for GP covariance matri-

ces to be expressed as KTPs, which result in significant savings. This is ideal in the

noiseless case (σ = 0) as the subsequent computations are straight-forward: Computing
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Algorithm 2 Generalized Kronecker tensor-vector product (KTVP)

Require: Kronecker factors [C1 ∈ Rm1×m̈1 , . . . CD ∈ RmD×m̈D ], vector y ∈ RN̈

1: n← N̈ =
∏D

i=1 m̈i

2: for i = D to 1 do
3: Y ← reshape(y, m̈i, n/m̈i)
4: Y ← CiY \\Matrix-matrix product after vectorizing y in Eq. 3.11
5: Y ← Y T

6: y ← vec(Y )
7: n← length(y) \\ Update length of vector y
8: end for
9: return y ∈ RN=

∏D
i=1 mi

matrix Ĉ = C follows from the KTP decomposition, matrix-vector terms t = C−1y

and tTPt from successive KTVPs (Eq. 3.8), log-determinant of matrix Ĉ from the

log-sum of the eigenvalues specified by matrix Z, and the trace of the matrix product

Ĉ−1P = ⊗Di=1C
−1
i Pi from the sum of its diagonal entries (Eq. 3.9).

For non-zero isotropic noise (σ > 0), we rely on eigendecomposition of covariance

matrix C into products of KTP eigenvectors for all Kronecker factors Ci; incorporating

the noise term is simply the addition of the bandwidth term σ2 to the diagonal of the

KTP eigenvalue matrix Z. The subsequent operations for log-determinant and inverse-

covariance matrix-vector product are given by

log |Ĉ| =
N∑
i=1

log (diag (Z)i + σ2), Ĉ−1 = (C + σ2I)−1 = U(Z + σ2I)−1UT ,

t = Ĉ−1y = KTVP
(
U, [1./diag

(
Z + σ2I

)
]. ∗KTVP

(
UT , y

))
,

(3.12)

using two KTVPs and diagonal scaling operations; computing the term tTPt follows a

similar procedure for partial derivative KTP matrix P . Computing the trace term, using
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the invariance under cyclic permutation property and the inner product of diagonals from

Eq. 3.9, is given by

tr
(
Ĉ−1P

)
= diag

(
(Z + σ2I)−1

)T diag
(
⊗j−1
i=1Zi ⊗ UT

j VjWjV
T
j Uj ⊗Dl=j+1 Zl

)
,

(3.13)

where the costs of all diagonalizations in Eq. 3.13 is O
(
N +m3

j

)
operations.

The total costs of grid GPR inference (mean prediction) and computing the LMH

gradient are reduced to O
(∑D

i=1 m
3
i +N

∑D
i=1mi

)
operations and O

(
N +

∑D
i=1m

2
i

)
space respectively. Both terms are minimized when the size of each Kronecker fac-

tor Ci is the constant mi = N1/D with best case sub-quadratic asymptotic costs of

O
(
D(N3/D +N1+1/D)

)
operations and O

(
N +DN2/D

)
space.

3.2.3 Relation to GPLVM

GPLVM [88] is a technique for dimensionality reduction that maps a set of d̃l-dimensional

latent variables X ∈ RÑ×d̃l to the set of d̃-dimensional observations Y ∈ RÑ×d̃ that is

constrained by a covariance prior. Finding the unconstrained latent variables X (low-

dimensional representation) can be achieved by optimizing the GP data goodness-of-fit

criterion, namely the LMH function. We show that the LMH formulation is simply the

inverse formulation of grid GPR by expressing trace and log-determinant terms as

log p(Y |X) = −1

2

(
d̃ log |Ĉ|+ tr

(
Y T Ĉ−1Y

)
+N log(2π)

)
,

tr
(
Y T Ĉ−1Y

)
= yT C̃−1y, C̃ = Id̃ ⊗ C + σ2IN , d̃ log |Ĉ| = log |C̃|,

(3.14)
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where vector y = vec(Y ) ∈ RN , and N = Ñ d̃ (see Appendix 3.9.2).

Grid GPR’s formulation (Eq. 3.14) from that of GPLVM, is interpreted as the addi-

tion of latent inputs X1 = [1, . . . , d̃]T and a leading Kronecker delta covariance function.

When latent variablesX are not constrained to a multidimensional grid, GPLVM becomes

grid GPR forD = 2 and mean prediction and gradient computations have compact forms.

The log-determinant and inverse matrix product t = C̃−1y can be expressed as a discrete

time Lyapunov or Sylvester equation [90] given by

log |C̃| = d̃
Ñ∑
i=1

log (diag (Z)i + σ2), CTT + σ2T = Y, t = vec(T ),

which has a standard solution [91]. The gradient terms for partial derivative matrices

P̃ = Id̃ ⊗ P and P = ∂C/∂Θi are expressed as

tT P̃ t = tTvec(P TT ), tr
(
C̃−1P̃

)
= diag

((
Id̃ ⊗ Z + σ2IN

)−1
)T

diag
(
Id̃ ⊗ (UTPU)

)
.

When the latent inputs are also be constrained to a multidimensional grid, the covariance

matrix decomposes into KTPs in addition to the leading identity-block matrix.

3.3 Sparse-Grid GPR

Sparse GPR methods are commonly used for large datasets that reduce the O (N3) com-

putational overhead of standard GPR to a more manageable O (M2N) for M << N

number of sparse or “inducing” variables which summarize latent function realizations

along both training and test inputs. For tensor datasets, the sparsity assumption may not
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apply to each dimension of the grid; the number of inducing inputs M would be the

product of sparse and dense dimension sizes which may be large. We show below that

some sparse GPR methods have efficient formulations for inference and hyperparameter

training for gridded inducing variables.

For notation, a unified framework for sparse GPR [58] was presented as a modifi-

cation of the joint prior p(f, f∗) under the additional assumption that all latent function

realizations f are conditionally independent given a set of M random (inducing) variables

u = [u1, . . . , uM ]T indexed by the input set X{u}. The approximated joint priors q(y, f∗),

after marginalizing out the inducing variables u, has the normal distribution given by

q(y, f∗) ∼ N

0,

 Q̂ Qf∗

Q∗f c


 , Q̂ = Qff + ∧, Qff = KfuK

−1
uuKuf ,

for the matrices Kuu = K(X{u}, X{u}), Kfu = K(X,X{u}) and the terms (∧, c) which

depend on the sparse method. The modified LMH function and its gradient w.r.t. hyper-

parameter Θi have the same formulation as Eq. 3.6 with substitution Q̂→ K̂. This allows

hyperparameters and inducing inputs X{u} (treated as hyperparameters) to be trained us-

ing gradient methods. Both the posterior means and posterior variances have the respec-

tive expanded and compact formulations given by

q(f∗|y) = N (Q∗f (Qff + ∧)−1y, c−Q∗f (Qff + ∧)−1Qf∗)

= N (K∗uΣKuf ∧−1 y, c−Q∗∗ +K∗uΣKu∗), Σ = (Kuf ∧−1 Kfu +Kuu)
−1.

(3.15)

71



The latter formulation requires the inversion of a so-called “economical” Gram matrix

Σ ∈ RM×M which requires O (M2N) operations and O (M2) space to compute.

To extend our grid GPR conditions for sparse GPR, we first consider both subset

of regressors (SoR) and deterministic training conditional (DTC) sparse methods where

∧SoR = ∧DTC = σ2I , cSoR = Q∗∗, cDTC = K∗∗. In these case, only the matrix terms Kuu,

KufKfu and Kufy are relevant for analysis.

Case 1: For multidimensional gridded inputsX and arbitrary inducing inputsX{u},

the rows of matrix Kuf are expressed as VKTP
(
X, xu ∈ X{u}

)T using Eq. 3.9. The

matrix products Kufy and KufKfu require O (MN) and O
(
M2

∑D
i=1mi

)
operations

with O (M) and O (M2) space respectively.

Case 2: For arbitrary inputs X and multidimensional gridded inducing inputs

X{u} = X
{u}
1 ×X{u}2 ×. . .×X{u}D (m{u}i = |X{u}i |,M =

∏D
i=1 m

{u}
i ), the matrix products

Kufy andKufKfu are outer-products
∑N

i=1K(X{u}, xi)yi and
∑N

i=1 K(X{u}, xi)K(xi, X
{u}),

computable in O (MN) and O (M2N) operations with O (M) and O (M2) space respec-

tively.

Case 3: For multidimensional gridded inputs X and inducing inputs X{u}, the ma-

trices Kfu, Kuf , and Kuu have both a KTP factorization and the low-rank decomposition

following the example of KufKfu = ⊗Di=1K
{uf}
i K

{fu}
i . If matrix Σ is stored, then matrix

operations Kufy and KufKfu depend on a sparsity ratio (number of inputs along dimen-

sion over total number of inputs) given by ρj = m
{u}
j /mj; computing these matrices
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require

O

(
N

D∑
i=1

m
{u}
i

D∏
j=i+1

ρj

)
, O

(
M2 +

D∑
i=1

mim
{u}2
i

)
, (3.16)

operations with O (M) and O (M2) space respectively. The cost of computing and storing

the economical Gram matrix Σ in the form of Eq. 3.15 dominates when M > max(mi)

and is not suitable when some dimensions are not sparse.

Fortunately for Case 3, we can express the economical Gram matrix Σ as products

of KTPs with diagonal scaling by a reformulation of the inverse of matrix summations.

One method is to compute the eigendecompositions of KTP matricesKuu = ⊗Di=1UiZiU
T
i

where U = ⊗Di=1Ui and Z = ⊗Di=1Zi followed by a second set of eigendecompositions

of the KTP matrix Z−1/2UTKufKfuUZ
−1/2 = ⊗Di=1ŪiZ̄iŪ

T
i . This relies on the fact that

both matrices Kuu and σ−2KufKfu can be fully expressed as KTP eigendecompositions

given their original KTP factorizations. Economical matrix Σ can now be expressed as

products of KTPs with diagonal scaling given by

Σ = σ2Ω(Z̄ + σ2I)−1ΩT , Ω = UZ−1/2Ū , Ū = ⊗Di=1Ūi, Z̄ = ⊗Di=1Z̄i, (3.17)

which requires

O

(
D∑
i=1

m
{u}2
i (m

{u}
i +mi)

)
, O

(
D∑
i=1

m
{u}
i (m

{u}
i +mi)

)
, (3.18)

operations and space respectively. While matrix Ω is not orthogonal and matrix (Z̄ +
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σ2I)−1 is not the scaled eigenvalues of Σ, the determinant |Σ| remains easy to compute

as the product of orthogonal matrix determinants cancel to give the expression

log |Σ| = log σ2 + log |Z| − log |(Z + σ2I)|. (3.19)

See Appendix 3.9.3 for the derivation of the data LMH and gradients for hyperparameter

training. Thus, the overall costs in terms of respective operations and space are given by

O

(
D∑
i=1

m
{u}2
i (m

{u}
i +mi) +

D∏
i=1

m
{u}
i +N

D∑
i=1

m
{u}
i

D∏
j=i+1

ρj

)
, O

(
D∑
i=1

m
{u}
i (m

{u}
i +mi)

)
.

(3.20)

Note that the decomposition by Eq. 3.17 does not apply to other sparse GPR

methods such as the fully independent training conditional (FITC) and partially inde-

pendent training conditional (PITC) where ∧FITC = diag (Kff −Qff + σ2I), ∧PITC =

blockdiag (Kff −Qff + σ2I), cFITC = cPITC = K∗∗. This is because matrixKuf∧−1Kfu

within the economical Gram matrix Σ may not have a D-KTP decomposition for a non-

constant diagonal in matrix Kff −Qff subject to arbitrary noise term σ. Thus, we do not

extend grid GPR conditions to the FITC and PITC cases.

3.4 Missing Data for Grid GPR

Efficient handling of missing data arise in practical applications where samples may be

corrupted by noise and discarded. For tensor datasets, the subsequent loss of a few sam-

ples from the training dataset would violate the multidimensional grid conditions; revert-
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ing back to standard GPR is not feasible due to the size of the dataset. Fortunately, we

show that grid GPR can still perform fast and exact inference and hyperparameter train-

ing (compared to standard grid GPR) for small missing data sets r ∈ NR of size R (rthi

row-columns are missing from covariance matrix C). For efficient handling of missing

data for sparse-grid GPR, see Appendix 3.9.4.

Formally, let missing observations yr ∈ RR in y ∈ RN have the corresponding

missing input set X{r}; in the singleton case (R = 1), removing a single row-column cr

from C clearly invalidates its KTP decomposition. However, we can express this single

row-column deletion within matrix Ĉ = C + σ2I as

Ĉ =


C11 c1r C13

cTr1 crr cTr3

C31 c3r C33

+ σ2I, C̄ =


C11 + σ2I 0 C13

0T 1 0T

C31 0 C33 + σ2I

 , (3.21)

by zeroing out rth row-column and replacing the diagonal entry with 1 in the resulting

matrix C̄ [92]. The implications are as follows: the determinant of matrix C̄ and the

entries excluding the rth row-column of the inverse matrix C̄−1 would be equivalent to

that of a row-column deleted matrix C and its inverse; this is easy to see as row-columns

of matrices C̄ and Ĉ may be permuted into dense and identity blocks before carrying

out the inversion. Generalizing the validity of the singleton case (Eq. 3.21) for multiple

row-column deletions, a transformation from matrix C to C̄ can be expressed as rank-1
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updates/downdates given by

C̄ = Ĉ + aaT − bbT ,

a =

√
||ĉr||

2

(
ĉr
||ĉr||

+ er

)
, b =

√
||ĉr||

2

(
ĉr
||ĉr||

− er
)
,

ĉr =

[
−c1r,

1−crr−σ2

2
,−c3r

]T
,

(3.22)

where vector er is the rth column of the identity matrix. The procedure is generalized for

multiple R missing inputs in Algorithm 3.

For multiple R missing inputs, the column-vectors b, a can either concatenate into

R pairs of successive rank-1 downdates and updates or alternatively into two rank-R

downdates and updates C̄ = Ĉ −BBT +AAT for A,B ∈ RN×R; columns of matrices A

and B follow Eq. 3.22 for each vector ĉri and zeroing out entries Ari,i+1:R and Bri,i+1:R.

For descriptive purposes, we derive the matrix inversion of C̄ from the latter formulation

in two steps. The inverse of a rank-R downdate to a matrix Ĉ [80] and the log-term can be

efficiently computed by the modified Woodbury formulation for diagonal matrix D given

Algorithm 3 Compute column-vectors to handle row-column ri deletion (ComputeABC)
Require: General column indices r ∈ Ni, Noise term σ

1: global KTP matrices [C1 ∈ Rm1×m1 , . . . CD ∈ RmD×mD ]
2: ĉ← −VKTP (X, xri ∈ X) \\ Compute via Algorithm 2
3: ĉri ← (1 + ĉri − σ2)/2
4: ĉr1:i−1

← 0 \\ Zero-out previous missing data entries
5: a = (ĉ/||ĉ||+ eri)

√
||ĉ||/2 \\ eri is the rith column of the identity matrix

6: b = (ĉ/||ĉ|| − eri)
√
||ĉ||/2

7: return a, b, ĉ ∈ RN \\ Vectors for Eq. 3.22
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by

(Ĉ −BBT )−1 = Ĉ−1 +B(R)DB(R)T , B(k) =
[
B

(1)
1 , . . . , B

(k)
k

]
∈ RN×k,

D
(k)
ii = (1− < Bi, B

(i)
i >)−1, log |Ĉ −BBT | = log |Ĉ| − log |D|,

(3.23)

where superscript refers to the iteration and subscript the general column index. The

column update rule for the desired matrix B(R) is given by

B
(k+1)
k+1 =

(
Ĉ−1 +B(k)D(k)B(k)T

)
Bk+1 ∈ RN . (3.24)

The rank-R update to matrix C̄−1 = [(Ĉ −BBT ) +AAT ]−1 following the initial rank-R

downdate by Eqs. 3.23 and 3.24 has the analogous formulation given by

C̄−1 = Ĉ−1 +B(R)DB(R)T − A(R)EA(R)T , A(k) =
[
A

(1)
1 , . . . , A

(k)
k

]
∈ RN×k,

E
(k)
ii = (1+ < Ai, A

(i)
i >)−1, log |C̄| = log |Ĉ −BBT | − log |E|,

(3.25)

with the column update rule for matrix A as

A
(k+1)
k+1 =

(
Ĉ−1 +B(R)DB(R)T − A(k)E(k)A(k)T

)
Ak+1 ∈ RN . (3.26)

The column updates to matrices B(R) and A(R) consist of KTVPs by Eq. 3.12 and a

series of N ×R sized matrix-vector products making. The asymptotic costs are given by

O
(
R2N +RN

∑D
i=1mi

)
operations and O (RN) space. Similarly, the inverse matrix-
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vector product t̂ = C̄−1ŷ is given by

t̂ =
(
Ĉ−1 +B(R)DB(R)T − A(R)EA(R)T

)
ŷ, t̂i∈X{r} = ŷi∈X{r} = 0, (3.27)

where zeroing-out entries belonging to missing set r gives valid expression to other terms

as t̂TP t̂. The trace term tr
(
C̄−1P

)
has the analogous expansion given by

tr
(
C̄−1P

)
= tr

(
Ĉ−1P

)
+ tr

(
DB(R)TPB(R)

)
− tr

(
EA(R)TPA(R)

)
−
∑
i∈R

Pii,

(3.28)

which follows Eq. 3.13, the trace of two R × R matrices in terms of KTP matrix P ,

and the subtraction of the missing data diagonal entries in matrix P ; the asymptotic costs

remain unchanged from computing matrices A(R) and B(R). The predictive variance can

be computed from the expansion given by

cov (f∗) = K∗∗ − (K∗f −K∗r)
(
Ĉ−1 +B(R)DB(R)T − A(R)EA(R)T

)
(Kf∗ −Kr∗),

(3.29)

where matrix K∗r ∈ R∗×N are the missing columns of K∗f and elsewhere zero.

3.5 Extra Data for Grid GPR

Efficient handling of extra data arise in applications where multiple gridded inputs of in-

terest can be selected and evaluated (e.g. patches in image processing, regions of interest

in geographic information systems). For subsets within a tensor dataset, the presence of
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extra non-gridded samples would violate the multidimensional grid conditions. Fortu-

nately, we show that grid GPR can still perform fast and exact inference and hyperpa-

rameter training (compared to standard grid GPR). We first consider the case of the union

between unstructured (non-gridded) data with a single multidimensional grid data and

then the case of the union between two multidimensional grids.

Unstructured extra data: For input sets X = {X{s}, X{c}} where set X{s} of

size S contain points outside the grid X{c}, let the block-covariance matrix be given by

T̂ = T + σ2I where T = K(X,X). Its inverse can be formulated under the block-matrix

inversion lemma given by

T̂ =

 Ĥ GT

G Ĉ

 , H = K(X{s}, X{s}),

Ĥ = H + σ2I,

C = K(X{c}, X{c}),

Ĉ = C + σ2I,

,

T̂−1 =

 H̄ −H̄GT Ĉ−1

−Ĉ−1GH̄ Ĉ−1GH̄GT Ĉ−1 + Ĉ−1

 , G = K(X{c}, X{s}),

(3.30)

where matrix H̄ = (Ĥ − GT Ĉ−1G)−1 and the columns of matrix G are VKTPs defined

over sets X and X{s}.

As the extra data size S grows, the cost of the matrix inversion H̄ dominates with

O (S3) operations and can be interpreted as performing standard GPR over the arbitrary

input set X{s}. Computing the inverse matrix-vector product t = T̂−1y via Eq. 3.30

requires a KTVP followed by series of N ×S sized matrix-vector products. Since matrix

Ĉ is invertible, the block-determinant can be expressed as log |T̂ | = log |Ĉ| − log |H̄|.

The gradient terms tTPt and tr
(
T̂−1P

)
are computed from the block partial-derivatives
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of matrix T̂ and block-matrix products

P =

 ∂Ĥ
∂Θ

∂GT

∂Θ

∂G
∂Θ

∂Ĉ
∂Θ

 , tr
(
T̂−1P

)
= tr

(
H̄P11

)
+ tr

(
Ĉ−1P22

)
+tr

(
GT Ĉ−1(P22Ĉ

−1G− 2P21)H̄
) ,

where the matrix product Ĉ−1G is expanded using Eq. 3.12 and computed as 2S KTVPs.

Gridded extra data: If the extra data set X{s} is also a Cartesian outer product

with D dimensions, then the covariance matrix Ĥ and inverse have analogous Kronecker

decompositions to that of matrix Ĉ. Difficulties arise in efficiently handling the noise term

σ as the eigenvectors of the block-matrix T are not computed and may not be expressible

as a single KTP. In the case where the noise term is zero, matrix H̄ = (H +GTC−1G)−1

can readily be expressed as products of KTPs with diagonal scaling via Eq. 3.17 by

substituting matrices H → Kuu, GTC−1G → KufKfu and removing the σ term; all

block matrices within T̂−1 have KTP structures and the total computational costs are the

sum of individual costs for two grid GPs specified on inputs X{c} and X{s}.

3.6 Fast Greedy Backward Subset Selection

Classical subset selection methods are commonly used for feature extraction and data re-

duction prior to classification and regression tasks. One popular method is the GBSS [54]

(Algorithm 4) for ranking the input samples as either “salient” or “redundant”. GBSS

begins with the set of all inputs and progressively removes the least promising ones dur-

ing each iteration according to an objective function. The objective function is chosen

to be grid GPR’s remaining data LMH (Eqs. 3.6, 3.25) which can be interpreted as a
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measure of similarity between the data and the GP prior assumptions; redundant samples

will fit the GP prior assumptions (high LMH) whereas salient ones do not. Conversely,

input samples, whose removal would minimize the remaining data LMH, are identified as

redundant; inputs that maximize the remaining LMH are identified as salient. Moreover,

computing the LMH on the remaining dataset is efficient as the eliminated subset can

be treated as missing data from a grid GP (see section 3.4); each input in the remaining

dataset is thus tested for its “inclusion” into the missing subset by GBSS during each

iteration.

Algorithm 4 Greedy Backward Subset Selection Wrapper (GBSS)
Require: Kronecker factors [C1 ∈ Rm1×m1 , . . . CD ∈ RmD×mD ], Number of missing

inputs R, Mode k = {−1, 1} (redundant or salient), Observations y ∈ RN , Noise
term σ

1: N ←
∏D

i=1mi

2: r ← ∅ \\ Initial subset of inputs
3: for i = 1 to R do
4: l← −k∞ ones(N, 1) \\ Initial LMH
5: for r̂ 6∈ r do
6: lr̂ ← TestCol(i,ColToK(r̂), [r, r̂], y, σ) \\ Data LMH
7: end for
8: r ← [r, arg max (kl)] \\ Select minimizing or maximizing input
9: UpdateCol(i,ColToK(ri), r, σ)

10: end for
11: return r ∈ NR

For notation, let input r be the missing dataset of size R and ri ∈ r be the ith input

removed. To express the R number of row-column deletions to the inverse covariance

matrix C̄−1 (Eq. 3.22), it is more efficient to use the formulation of R pairs of successive

rank-1 updates/downdates than the formulation of two rank-R updates/downdates (Eqs.

3.23 and 3.25). The former modifies the order for computing the leading ith column

of matrices B(R), D(R), A(R), E(R) once an input is included (see function UpdateCol in
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Algorithm 5); the latter modifies all of matrix A(R) for any point changes made to matrix

B(R) which is inefficient. This allows the ith row-column rank-1 update/downdate to Ĉ−1,

given by

ξ(i) = Ĉ−1 − A(i)
:,1:i−1E

(i)
1:i−1A

(i)T

:,1:i−1 +B
(i)
:,1:i−1D

(i)
1:i−1B

(i)T

:,1:i−1, (3.31)

to be efficiently computed in O
(
N(
∑D

j=1 mj) +Ni+N2
)

operations and O (Ni+N2)

space.

Another computational improvement follows from modifying GBSS to reuse results

from inclusion tests from prior iterations; the test for the inclusion of input r̂ between two

successive iterations can be made efficient. Consider the two sequences of missing inputs

evaluated at rounds i and i+ 1 where r̂ is evaluated last:

r(i) = [r1:i−1, r̂], r(i+1) = [r1:i, r̂], (3.32)

where differ by the inclusion of input ri; both sequences are preconditions for all calls

Algorithm 5 Update column i of matrices B(i), D(i), A(i), E(i) (UpdateCol)
Require: ith column update for D-KTP column index q̄ = ColToK(ri) ∈ ND, Missing

data set r ∈ Ni, Observations y ∈ RN , Noise term σ
1: global B(i), A(i) ∈ RN×i, D(i), E(i) ∈ Ri, ξ ∈ RN×N \\Missing-set internals
2: [a, b]← ComputeABC(r, σ) \\ Algorithm 3
3: B

(i)
:,i ←

(
Ĉ−1 − A(i)

:,1:i−1E
(i)
1:i−1A

(i)T

:,1:i−1 +B
(i)
:,1:i−1D

(i)
1:i−1B

(i)T

:,1:i−1

)
b

4: D
(i)
i ← 1/(1− < B

(i)
:,i , b >) \\ Update diagonal by Eq. 3.23

5: A
(i)
:,i ←

(
Ĉ−1 − A(i)

:,1:i−1E
(i)
1:i−1A

(i)T

:,1:i−1 +B
(i)
:,1:iD

(i)
1:iB

(i)T

:,1:i

)
a

6: E
(i)
i ← 1/(1+ < A

(i)
:,i , a >) \\ Update diagonal by Eq. 3.25

7: ξ(i) ← ξ(i−1) − A(i)
:,i−1E

(i)
i−1A

(i)T

:,i−1 +B
(i)
:,i−1D

(i)
i−1B

(i)T

:,i−1 \\ Initial ξ(0) = Ĉ−1
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made to TestCol (Algorithm 6) until test input r̂ is added into the missing set. The rank-1

column update-downdate vectors a, b, c (Eq. 3.22, function ComputeABC for Algorithm

3) can be specified as a set of efficient recurrence-relations: The difference-vector c(i+1)−

c(i) = −c(i)
ri eri is simply a sparse vector with a single non-zero entry at index ri. This

allows column-vectors c to be expressed as two equivalent recurrence relations such that

a, b are efficiently computed:

c(i) = a(i)
√

2|c(i)| − |c(i)|er̂, a(i+1) =
−c(i)

ri eri + (|c(i+1)| − |c(i)|)er̂√
2|c(i+1)|

+ a(i)

√
|c(i)|
|c(i+1)|

,

c(i) = b(i)
√

2|c(i)|+ |c(i)|er̂, b(i+1) =
−c(i)

ri eri − (|c(i+1)| − |c(i)|)er̂√
2|c(i+1)|

+ b(i)

√
|c(i)|
|c(i+1)|

,

(3.33)

where updates to a(i+1), b(i+1) are vector-summations of the preceding column vector

(scaled) and a sparse column (two non-zero entries at indices ri and r̂). This formula-

tion (Eq. 3.33) allows the subsequent matrix-columns B(i+1)
i+1 and A(i+1)

i+1 to be updated

in-place within function TestCol for each test input r̂ and stored in matrix-columns B̂:,r̂

and Â:,r̂ respectively. The column update operations are efficient as they only use vector

scaling, two vector summations (made possible by an invariant matrix ξ(i) between calls

to TestCol), and six rank-1 matrix-vector products. Thus, the costs of one GBSS iteration

are reduced to O (N) operations and O (N2) space.
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Algorithm 6 Test inclusion of input ri = r̂ into missing data set (TestCol)
Require: ith inclusion test for D-KTP column index q̄ = ColToK(ri) ∈ ND, Missing

data set r ∈ Ni, Observations y ∈ RN , Noise term σ
1: global B(i), A(i) ∈ RN×i, D(i), E(i) ∈ Ri, ξ(i−1) ∈ RN×N \\Missing-set internals
2: global B̂, Â, T̂ ∈ RN×N \\ Test-input internals
3: \\ Compute current and previous columns using Algorithm 3
4: [a(i), b(i), c(i)]← ComputeABC(r, σ)
5: [c(i−1)]← ComputeABC([r1:i−2, ri], σ)

6: b̂← −
[
c
(i−1)
ri

; ||c(i)||−||c(i−1||)
]

√
2||c(i)||

, â← −
[
c
(i−1)
ri

; ||c(i−1)||−||c(i)||
]

√
2||c(i)||

∈ R2

7: \\ Update by Eq. 3.33 and latest rank-1 update-downdate pair

8: β ←
√
||c(i−1)||
||c(i)|| B̂:,ri + ξ

(i−1)
:,ri−1:i b̂− (A

(i)
:,i−1E

(i)
i−1A

(i)T

:,i−1 −B
(i)
:,i−1D

(i)
i−1B

(i)T

:,i−1)b(i)

9: δ ← 1/(1− < β, b(i) >) \\ Diagonal entry in Eq. 3.23

10: α←
√
||c(i−1)||
||c(i)|| Â:,ri + ξ

(i−1)
:,ri−1:i â− (A

(i)
:,i−1E

(i)
i−1A

(i)T

:,i−1 −B
(i)
:,i−1D

(i)
i−1B

(i)T

:,i−1)a(i)

11: B̂:,ri ← β, Â:,ri ← α \\Write columns to internal matrices
12: α← α + βδβTa(i), γ ← 1/(1+ < α, a(i) >) \\ Diagonal entry in Eq. 3.23
13: yr ← 0, t← T̂:,ri − ξ

(i−1)
:,ri−1yri−1

− (A
(i)
:,i−1E

(i)
i−1A

(i)T

:,i−1 −B
(i)
:,i−1D

(i)
i−1B

(i)T

:,i−1)y

14: T̂:,ri ← t, t← t+ (βδβT − αγαT )y

15: l← 1/2
(

log |C| −
∑i−1

j=1(logD
(i)
j + logE

(i)
j )− δ − γ+ < y, t > +(N − i) log(2π)

)
16: return −l ∈ R \\ Remaining data LMH

3.7 Experiments and Applications

GP models (standard, sparse, grid, sparse-grid) are specified and trained on both syntheti-

cally generated high-dimensional tensor data and real 2D-HRTF datasets. GP covariance

function hyperparameter optimization use the natural gradient (Eq. 3.6) with resilient

back-propagation (RPROP) [93]; RPROP locally rescales each hyperparameter via an

online step-size adaptation based the sign of the gradient (evaluated once per iteration).

The heuristic gives a fast convergence rate and prevents oscillatory behavior compared

to standard gradient descent methods. Compared to nonlinear conjugate gradient, also

RPROP provides tractable run-time cost analyses due to the absence of line-search. All

experiments are conducted on an Intel i7-2630QM laptop running Matlab 2010 on 64-bit
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Windows.

3.7.1 Performance Tests on Synthetic Data

The performance (training and inference runtimes) gains by grid and sparse-grid GP

methods over standard GP and sparse GP is easily demonstrated in the case of high multi-

dimensional gridded data. Consider the following toy-example: let a D dimensional cube

centered about the origin be uniformly partitioned into a multi-dimensional grid of inputs

X = X1 × . . . × XD with linear spacing of size m = 32 along each dimension. Let

the N = mD number of inputs index the respective outputs y which are initialized to the

input vector’s Euclidean norm and then mapped to the angular frequency of the cosine

function given by

Xj =

{
−1 :

2

m− 1
: 1

}
, yi = cos

√√√√ 1

D

D∑
j=1

x2
ij

 , (3.34)

before corrupted by additive Gaussian white noise ŷi = yi + N (0, σ2) where σ = .3.

The underlying function y is convex in the domain of X such that for sparse-grid GPR,

we can specify a low number of inducing points (m{u} = 3 → m) without overfitting;

the trained inducing points should ideally be equidistant from the origin. The well-known

squared exponential covariance functionKi(xj, xk) = exp
(
− (xj−xk)2

2θ2
i

)
is specified along

the ith dimension such that the overall covariance is the TPK covariance cov (xj, xk) =

α2
∏D

i=1Ki(xj, xk). The global-scale hyperparameter α and D number of length-scale

hyperparameters θi are trained for 50 iterations. Figure 3.1 illustrates posterior means

and variances at a gridded test set of inputs on 2D synthetic data by standard (STD) grid
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and sparse grid GPs; the posterior variances grow larger for locations further from the

inducing locations.
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(a) 1D Posterior Distribution (b) 2D Posterior Distribution

Figure 3.1: Posterior distributions for standard grid and sparse-DTC grid GP methods are
shown for synthetic data (Eq. 3.34). Initial sparse inputs (2) once trained (X) move away
from the origin in the 2D case.

Varying D and input size m per dimension: Synthetic high-dimensional tensor

datasets (Eq. 3.34) are generated for two cases of an increasing input dimension D with

a fixed number of samples m per dimension, and an increasing m with fixed D. Stan-

dard, sparse, standard grid, and sparse grid GPs are specified and trained on this dataset.

Their prediction accuracy is evaluated by the root mean squared error (RMSE) metric

(
√∑N

i=1(f̄i − yi)2/N at training input xi) between the posterior means predictions and

reference observations. Figure 3.2 compares the models’ training runtime, data LMH,

and the predictions’ RMSE. The results are expected as sparse-grid GPR scales better

than standard grid GP training for fixed dimension D and increasing input sizes N as

the number of inducing points to train remain constant. Standard and sparse GPs did not

terminate for D > 3 due to memory and runtime restrictions and similarly for m greater

than 25 and 27 respectively for fixed dimension D = 2.

Varying number of missing data R and number of extra data S: Synthetic
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(b) Varying inputs per dimension

Figure 3.2: Training runtimes, LMH, and RMSE are shown for cases of varying dimen-
sion D (fixed m = 32, M = 32D) and varying number of inputs per dimension 2m (fixed
dimension D = 2, M = (2m)2) for standard, DTC, standard grid, and sparse-DTC grid
GP methods.

datasets (Eq. 3.34) are generated for fixed D = 2 and m = 32. In one case, a variable

number R of samples are removed from the dataset to simulate missing data. In another

case, a variable number S of samples are added (in accordance with Eq. 3.34) to the

dataset to simulate extra data. The number of missing and extra inputs are incremented

from 21...10−1 in powers of 2; the full range of missing inputs (from one to all but one) and

extra data (from one to near the size of original inputs) are covered. Standard, sparse, and

standard grid GPs are specified and trained on these datasets; grid methods use efficient

techniques for handling both cases of missing and extra data. Figure 3.3 compare the

models’ training runtime, data LMH, and predictions’ RMSE. The runtimes for standard

and grid GPR in missing data crossover after a quarter of the inputs R = 28 − 1 are

missing. The runtimes for standard and grid GPR in extra data converge as the cubic

runtime costs dominate. We omit the implementation for the case of missing and extra

data in sparse-grid GPR due to limited applications.
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Figure 3.3: Training runtimes, LMH, and RMSE are shown for cases of varying number
of missing data R and number of extra data S for fixed dimension D = 2 and fixed
number of inputs (322) across standard, DTC, and standard grid GP methods.

3.7.2 Grid and Sparse-Grid GPs for HRTF Interpolation

Spatial-temporal datasets can often be parameterized by Cartesian outer products between

the location and time of measurements; this is a common occurrence for time-series mea-

surements collected by a collection of fixed sensors over a region. Such is the case for

HRIR/HRTF datasets (e.g. CIPIC [1]), which consists of acoustic time-series measure-

ments by microphones placed in the human ears that record broad-band test signals (im-

pulses) emitted by loudspeakers positioned along a spherical-coordinate grid. Each mea-

surement, parameterized by a spherical elevation and azimuth pair Xs = (θ, φ), contains

information on how the sound source’s acoustic wave scatters off of a subject’s anatomic

features (torso, head, and outer ears) before reaching the eardrum. The information can

be represented as either a time-series impulse response (HRIR) or by a frequency-domain

transfer function (HRTF) which are interchangeable via the Fourier and inverse Fourier

transforms [7]. The latter magnitude HRTF representation is useful as the samples are

observed to be smooth in both the spatial and frequency (parameterized by wave-number
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Xω) domains. Thus, collections of HRTFs3, belonging to the same subject, can be param-

eterized by the Cartesian outer product of spatial-frequency input domains X = Xs×Xω

and modeled by stationary covariance functions.

One important application is the reconstruction of life-like auditory scenes via

HRTFs; acoustic waves (e.g. direct and reflected sound paths) that would enter the ear

from different directions can be simulated by convolving an HRTF with the sound-source.

Two issues arise in practice: A finite collection of HRTF measurements will never span

the entire spherical coordinate system. The HRTFs may also have different sampling

rates than that of the sound-source data. Both problems can be solved by learning an in-

terpolant (i.e. grid GP) between the input spatial-frequenciesX and the output magnitude

responses y = |HRTF(θ, φ, ω)|.

Under TPK assumptions (separable covariance functions), we specify grid GP’s

covariance function as the product of the Ornstein-Uhlenbeck (OU) [94] spectral density

(frequency domain covariance function) and the exponential of the chordal (“great-circle

distance”) distance4 (spatial domain covariance function) given by

K(θi, θj, φi − φj, ωi − ωj) =
α2

λ2 + (ωi − ωj)2
exp

(
−Ch(θi, θj, φi − φj)

`2

)
,

Ch(θi, θj, φi − φj) = 2

√
sin2

(
θj − θi

2

)
+ sin θi sin θj sin2

(
φi − φj

2

)
.

(3.35)

The OU process simulates a stochastic differential equation with standard Brownian mo-

tion; the λ term refers to the rate of mean reversion (drift to zero) which agrees with the

3The CIPIC database consists of 1250 HRTFs measured over a spherical grid for 45 different subject’s
left and right ears. Each measurement consists of 200 time samples, which after taking the magnitude of its
Fourier transform, is reduced to 100 frequency bins.

4distance on the unit sphere
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observation that HRIRs quickly decay to zero after the initial onset. The chordal distance

is selected as it represents a physical distance between two points on the unit sphere. The

exponential function is empirically selected via the GP goodness-of-fit criterion (largest

data LMH). In theory, valid processes over a sphere must have spatial covariance func-

tions that are expressible in a proper spherical basis [95], e.g.

K(θi, θj, φi, φj) =
∞∑
n=0

bn
4π

2n+ 1

n∑
m=−n

Y m
n (θi, φi)Ȳ

m
n (θj, φj), (3.36)

for spherical harmonic basis Y m
n (θ, φ) (Eq. 1.5) and coefficients bn that depend on the

choice and parameterization ofK (see Appendix 3.9.6). Moreover, the family of isotropic

covariances restricted to distances in R3, such as chordal Euclidean and Ch, are known to

be valid on the unit sphere [96,97]. Thus, the expected realizations of spherical processes

(i.e. grid GP’s posterior mean function f̄∗ in Eq. 3.5) can be expressed along a spher-

ical harmonics basis as they are simply weighted combinations of covariance function

evaluations (Representer theorem).

3.7.2.1 Grid and Sparse-Grid GPs Comparisons

Grid and sparse GP models are specified and trained on HRTFs (CIPIC subject 3, right-

ear). For sparse-grid GPs, the number of inducing inputs X{u} is constrained to be sparse

in either the frequency or the spatial domain but not both; the sparse subset of inducing

inputs are optimized for 100 iterations while the remaining inducing inputs (on the op-

posing axis) are fixed. For an illustration, GPs are specified on the collection of azimuth
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plane (θ = π radians) HRTFs (50 measurements) and optimized5; Figure 3.4 displays the

predicted mean response and confidence intervals at evenly spaced test inputs along the

spherical-frequency domains.

Figure 3.4: Posterior mean magnitude responses and variances for grid and sparse-DTC-
grid GPR along the azimuth plane are shown. Initial inducing inputs are marked as 2 and
trained inputs are marked as X.

For large-scale experiments, grid and sparse-grid GPs are trained over the full col-

lection of 1250 HRTFs (covering most of the sphere except an open hole below the head)

for each CIPIC subject. We adopt two distance measures to evaluate the predicted mag-

nitude responses: the spectral distortion (SD) is a logarithmic distance measure (dB)

between the overall reference and predicted spectra. The signal-to-distortion ratio (SDR)

5Sparse grid GP inducing inputs are constrained to be sparse in either frequency (10 of 100 bins) or
spatial (4 of 50 directions) domains but not both. Noise term is set to a constant ( σ = 0.05).
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provides a per-frequency measure of similarity. Both are given as

SD(H(θ, φ)) =

√√√√ 1

|Xω|

|Xω |∑
i=1

(
20 log10

|Hi(θ, φ)|
|Ĥi(θ, φ)|

)2

,

SDRω = 10 log10

∑|Xs|
i=1 Hω(θi, φi)

2∑|Xs|
i=1 (Hω(θi, φi)− Ĥω(θi, φi))2

,

(3.37)

where H and Ĥ are the true and predicted magnitude responses respectively.

Figure 3.5 shows the runtime to SD error trade-off between grid and sparse-grid

GP training. For sparse-grid GPs, the inducing inputs in frequency are fixed (set to the

full set of inputs Xω) and the M number of inducing inputs in the spatial dimension are

varied; both hyperparameters and inducing inputs are optimized for 50 iterations. Sparse-

grid GP’s LMH approaches that of grid GPR after M ≥ 150. The SD error flattens

after M ≥ 75 as further accuracy on the log-scale requires a larger M ; most of the error

occurs in higher frequency ranges where the magnitude response tends towards 0. The

experiment is repeated across the remaining subjects in the CIPIC database. Figure 3.6

shows the overall trade-off between runtime and SD for different frequency intervals.

Sparse-grid GP obtains perceptually indistinguishable SD errors (< 3 dB) in the low to

mid frequencies (0− 18 kHz) at a fraction of the runtime costs compared to grid GP.

3.7.2.2 Cross-Validation Experiments

In the first experiment, a random half of the 1250 HRTF measurements (subject 3, right-

ear) is chosen as the training set. Grid GP models are trained (50 iterations of hyper-

parameter optimization) and then predict HRTFs at the hold-out set (remaining inputs);
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Figure 3.5: Learning curves (runtime, LMH, and SD) for grid and sparse-DTC-grid GP
methods for are shown for increasing number of inducing inputs. Lower SD indicates
more accurate predictions.

the SDRs (Eq. 3.37) w.r.t. HRTFs in the hold-out set are shown in Figure 3.7(a), which

generalize the prediction errors over the entire spherical coordinate system. Other inter-

polation methods are compared: Inverse distance linearly interpolates HRTFs according

to the nearest k = 4 measurement directions. Spherical splines [42] fit a Legendre poly-

nomial basis over the sphere (default parameters for smoothing and expansion terms are

used). Spherical harmonic fitting [41] finds a least squares solution via a truncated SVD

method. The results show that grid GP outperforms (higher SDR) all other methods in

the 2− 20 kHz frequency range.

In the second experiment, we simulate missing inputs within a large spatial cone

(open hole task [98]) by removing all measurements that lie above a horizontal plane

(spherical incident angle θ < π/5 containing 147 measurement directions). This ex-

periment mimics the problem of inferring HRTFs over large areas where nearby data is

unavailable (e.g. the bottom hole in most HRTF measurement grids). Grid GP and other
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Figure 3.6: Spectral distortion (SD) errors are shown for predictions made by grid and
sparse-DTC-grid GPs across 45 CIPIC subject right-ear HRTF datasets. Sparse cases
consist of 100 and 50 inducing inputs (optimized in spherical domain, fixed in frequency).

interpolants are trained (50 iterations of hyperparameter optimization) over the remaining

measurements and evaluated at the test set. The SDRs are computed and shown in Fig-

ure 3.7(b). Grid GPR has the lowest errors along the 2 − 10 kHz frequency range and

consistently outperforms the other interpolations in the remaining frequencies.

3.7.2.3 Kernel Function Series Expansions

Acoustic measurement apparatus are commonly designed as sensor arrays arranged along

one or two fixed axes. For example, 2 − 3D microphone arrays have sensors that are

aligned/placed onto a rectangular grid; the spatial topology (sensor locations) can natu-

rally be expressed as Cartesian outer products between points along two to three Carte-

sian coordinate axes. For grid GP, this allows a valid separable TPK to be specified as the
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Figure 3.7: Cumulative SDRs (dB) for the interpolation (random partition) and extrap-
olation (missing hole) experiments are shown for grid GPR, inverse distance, spherical
harmonic, and spline interpolants. Larger SDRs indicate more accurate predictions.

product of covariance functions that are restricted to inputs along each axis. Moreover,

some “mixed” covariance functions, such as the squared exponential, can be shown to be

separable via series expansion (e.g. power series) laws:

ex =
∞∑
k=0

xk

k!
, e2xixj =

∞∑
k=0

(2xixj)
k

k!
,

e−(xi−xj)2

=
∞∑
k=0

2kxki e
−x2

ixkj e
−x2

j

k!
,

(3.38)

where the covariance matrix would be approximated as the truncated sum of KTP matri-

ces.

We show that the analogous treatment of spherical covariance functions on spherical

measurement-grid inputs is also possible: For azimuth and elevation parameters (θ, φ),

the squared exponential covariance of the chordal distance Ch (Eq. 3.35) is given by

e−
C2
h

2`2 =
∞∑
k=0

(
−2`−2 sin θi sin θj sin2

(
φi−φj

2

))k
e−

2 sin2
(
θj−θi

2

)
`2

k!
,

(3.39)

and thus expressible as a sum of products between θ and φ variables. The covariance
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matrix K where Kij = e−
Ch(θi,θj ,φi,φj)2

2`2 is expressed as a truncated (ρ number of terms)

sum of KTPs given by

K ≈
ρ∑

k=0

(−2`−2)
k
Kθ ⊗Kφ

k!
,

Kθ = (sin θi sin θj)
k e−

2 sin2
(
θj−θi

2

)
`2 , Kφ = sin2k

(
φi − φj

2

)
.

(3.40)

Efficient grid GP inference and training would thus take advantage of subsequent KTVP

operations that are enabled by these decompositions.

CIPIC [1] measurement grid analysis: The set of HRIR measurements are recorded

over directions corresponding to a rigid hoop of speakers. During recording sessions, the

hoop is rotated about the horizontal axis (parallel to the subject’s ears) as shown in Fig-

ure 3.8. The speaker locations can be made to fall on the grid of spherhical coordinates

θ × φ if the original directions are rotated by 90◦ or if two of the axes along the standard

basis are swapped. Note that this would not compromise the stationary kernel function in

Eq. 3.39 as the angular distances would remain invariant to rotations of the underlying

coordinate system.

The approximation error, due to truncation term ρ, can be bounded by considering

the Lagrangian remainder of the kernel function taken w.r.t. C2
h and given by

Rρ(C
2
h) =

∣∣∣∣e− z
2`2

(
−C2

h−a
2`2

)ρ+1
∣∣∣∣

(ρ+ 1)!
≤

∣∣∣∣(−C2
h

2`2

)ρ+1
∣∣∣∣

(ρ+ 1)!
,

(3.41)

where for center of expansion a = 0, the term z = 0 gives an upper bound on the

remainder for 0 ≤ Ch ≤ π. Figure 3.9 shows how the error rapidly decays with fewer
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(a) CIPIC Measurement Grid (b) Rotated Measurement Grid

Figure 3.8: CIPIC measurement directions are mapped to a spherical coordinate grid
under a simple rotation.

truncation terms ρ for large hyperparameter term ` and small Ch. For hyperparameter

` = 1.0, a truncation term of ρ = 13 has an upper bound (approximation error) of 0.0583

for the maximum Ch = π.

3.7.2.4 Spectral-Extrema Extraction

Spectral extrema (such as peaks and notches) of magnitude HRTFs have been shown to

correlate listening cues along specific directions (median plane) to anatomical features

[99,100]. Extracting the spectral extrema can be done by fitting smooth basis functions to

the magnitude spectra (e.g. cosine basis) and finding the local minima and maxima. For

the grid GP, the spectral extrema of the predicted HRTFs correspond to the zero-crossing

of the posterior mean (Eq. 3.5) function’s gradient, which are weighted combinations

of smooth covariance functions. The covariance function’s first and second-order partial
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Figure 3.9: Approximation errors are shown for the series expansion of the squared ex-
ponential of chordal distance for both varying number of truncation terms ρ and varying
hyperparameters `.

derivatives w.r.t. frequency ω∗ have closed-form expressions given by

∂f̄∗
∂ω∗

=

[
∂K1∗

∂ω∗
, . . . ,

∂KN∗

∂ω∗

]
K̂−1y,

∂2f̄∗
∂ω2
∗

=

[
∂2K1∗

∂ω2
∗
, . . . ,

∂2KN∗

∂ω2
∗

]
K̂−1y,

∂Ki∗

∂ω∗
=
−2α2(ω∗ − ωi)

(λ2 + (ω∗ − ωi)2)2
e−Chi∗/`

2

,
∂2Ki∗

∂ω2
∗

=
−2α2(λ2 − 3(ω∗ − ωi)2)

(λ2 + (ω∗ − ωi)2)3
e−Chi∗/`

2

.

(3.42)

To find the zero-crossings, we use the partial derivatives of Eq. 3.42 and a standard

iterative method (Newton-Raphson):

Updtae: ωn+1 = ωn −
∂f̄ωn
∂ωn

/
∂2f̄ωn
∂ω2

n

, Terminate: |ωn+1 − ωn| < τ. (3.43)
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Once the extrema are extracted, they can be further classified as either spectral notches or

peaks by evaluating the sign of their second-order derivatives.

In small-scale experiments, we trained grid and sparse-grid GPs for 50 iterations

on a sample HRTF (CIPIC subject 3, right ear, direction (θ, phi) = (2.3562, 0)) and

found the spectral extrema; The Newton-Raphson method converges in a several (< 10)

iterations using a termination threshold of 10−5. The initial inputs (frequency ω0) are

uniformly spaced in the frequency domain. Figure 3.10(a) shows the most prominent

peaks and notches that are found.
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Figure 3.10: GP and sparse-GP posterior distributions for the magnitude HRTF responses
are shown. Spectral extrema are extracted from the zero-crossing of the posterior mean’s
gradient.

In large-scale experiments, the spectra extrema are extracted for a large collection

of HRTFs (all 45 CIPIC subject, right-ear, horizontal and median plane directions). The

locations (frequencies) of the spectral notches and peaks are modeled by kernel density

estimations (KDEs) (Gaussian kernels and optimized bandwidth [101]); see Figure 3.11.

The horizontal plane extrema have a bi-modal distribution but do not exhibit a correspon-

dence between notches and peaks; notch densities (frequencies 7− 11 and 14− 16 kHz)

do not correspond with peak densities along the same frequencies. The median plane ex-
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trema have a quad-modal distribution and exhibit a correspondence between notches and

peaks; notch densities (centered along frequencies 6, 11, 15, 18 kHz) have analogous peak

densities shifted by +2 kHz. Both distributions are similar at the lower frequency ranges,

which can be attributed to the initial torso and head reflections.
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Figure 3.11: Kernel density estimation (Gaussian) of pooled spectral extrema for GPs
trained on horizontal and median plane HRTFs across all subjects, right ears.

3.7.3 Greedy Backward Subset Selection for Time-Delay Supports

The time-delay between acoustic wave-fronts that would reach a listener’s left and right

ears is an important spatial cue for sound-source localization. These cues, known as ITD,

can be computed from the difference between the onset reflections of same-direction left

and right ear HRIRs [102]. While ITDs can be derived from the spherical coordinate

domain under simplified assumptions (spherical head [2], ellipsoid head [103]), the actual

ITDs may deviate from these approximations due to slight asymmetries in shape of the

head and relative positions of the ears. Thus, non-parametric methods such as GPs may

be more accurate in modeling the ITDs.

We specify a GP using spherical input coordinatesX = Xs and ITD output observa-

tions y (CIPIC subject 3); a smooth squared exponential covariance function (K(θ, φ) =
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α2e−
C2
h

2`2 ) over the chordal distance Ch (Eq. 3.35) with hyperparameters (optimized via

Eq. 3.6 for 50 iterations) is used. Moreover, the measurements that deviate from the GP

prior assumptions, namely those that represent the asymmetries of the head, can be found

via GBSS (Algorithm 4). Figure 3.12 shows two GP posterior ITD distributions (over the

spherical coordinate domain) that are evidenced on the full set of ITD measurements and

the GBSS ITD measurements. The subset-selected inputs reveal a slight bias/asymmetry

towards the right hemisphere of the head.

Figure 3.12: GP predicted ITD means are shown in the left-column; GP predicted ITD
variances (95% confidence) are shown in the right-column. The measurement directions
are marked ◦. Predictions evidenced on the full and GBSS ITD measurements belong to
the top and bottom-rows respectively.

The quality of GPs evidenced on the GBSS ITD subsets can be evaluated via stan-

dard error metrics such as RMSE. Figure 3.13 shows the trade-off between the size of the

remaining subset, the data LMH, and the RMSE. To bound the two learning curves, the

opposite selection strategy (maximizing the remaining data LMH) is also implemented
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which causes the remaining subset to withhold redundant measurements. The maximum

gap between the best and worst case RMSEs and remaining LMH curves occurs at 50

remaining samples which indicates the number of supports (measurement direction and

ITD) that characterizes all ITDs over the dataset/sphere.
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Figure 3.13: Learning curves are shown for RMSE prediction errors (left plot) and re-
maining data LMH (right) for GPs evidenced on the GBSS remaining samples as inputs
are removed.

3.7.4 Greedy Backward Subset Selection for HRTFs

The search for representative data features serves an important function for reducing

model-order and computational costs. For HRTF datasets, the subset-selection of mag-

nitude responses over the spatial-frequency domains (under grid GP assumptions) would

characterize the complexity/model-order of a description of the underlying sound field.

Thus, analogous subset-selection experiments to section 3.7.3 are conducted for grid GPs

specified on spatial-frequency inputs X = Xs ×Xω and magnitude HRTF response out-
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puts y (see section 3.7.2). GBSS, using grid GP’s LMH as its objective function, ranks

the inputs as either salient or redundant w.r.t. the trained GP priors.

In the small-case, the dataset is restricted to the subset of magnitude responses

belonging to the inputs along the horizontal plane and the 9 − 13 kHz frequency band

for subject 12. Figure 3.14 shows grid GP’s predicted magnitude response means for

a variable R number of subset sizes; both selection strategies (minimize or maximize

the remaining data LMH) are tested. The results show that 750 of the 1000 inputs can

be removed (classified as redundant) before the mean reconstruction error (by grid GPs

evidenced on the remaining dataset) at the missing inputs exceeds 5 dB.

Figure 3.14: Grid GP’s posterior magnitude response means are shown for inputs (az-
imuth plane and 8.8−13 kHz inputs). The models are evidenced on the remaining subset-
selected inputs (eliminated inputs are marked X). “Salient/redundant” refer to selection-
strategies that “minimize/maximize” the remaining data LMH respectively; plots labeled
“removal” and “reconstruction” fill in the missing inputs via grid GP inference. Bottom-
row plots show the trade-off between subset-sizes and SD (over all predictions). Low SD
indicates small error.

In the large-case, the previous experiment is repeated across all 45 CIPIC subjects
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at different frequency bands; only the averaged learning curves are shown in Figure 3.15.

We remark on the inflection points along each of the learning curves: For subsets that

minimize the remaining LMH, the LMH curves are upwards-concave as inputs are re-

moved. Inflection points at R = 620, 720, and 780 number of missing inputs, for increas-

ing frequency ranges, suggest that the remaining inputs form the relevant subsets; grid GP

evidenced on this remaining subset is able to reconstruct the missing set with low error.

This is correlated with the SD errors which remain negligible upto these inflection points.
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Figure 3.15: Average grid GP’s (specified on the azimuth plane at different frequency
ranges) remaining data LMH and SD (over all predictions) are shown for increasing
subset-selected sizes. Low SD indicates small error.

The converse relation also holds for subsets chosen to maximize the remaining

LMH; the LMH curves are downward-concave as more inputs are removed. Inflection

points occur at R = 200, 60 and 50 number of missing inputs for increasing frequency

ranges; subsequent inputs that are placed in the missing set after these inflection points

decrease the remaining data LMH as GBSS begins to remove inputs that agree with the
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GP priors. This is not indicated in the SD errors as the greatest rate of increase occurs

betweenR = 200 to 300 where selecting against the GP zero-mean prior tends to increase

the SD if low-magnitude observations are removed.

3.8 Conclusions

We have presented an overview of multidimensional grid GPs and its theoretical compu-

tational costs/savings from the use of efficient Kronecker product formulations. A con-

nection between grid GP and Kronecker structures in GPLVM was remarked. Input mea-

surement grid and TPK conditions were extended to sparse GP methods. Two problems

for handling missing and extra data were posed and efficient solutions were presented; the

missing data case was extended to fast GBSS for ranking inputs according to grid GP’s re-

maining data LMH. The savings were empirically verified on high-dimensional synthetic

data for full, missing, and extra data problems. Last, we applied grid and sparse grid GPs

methods to interpolation, subset-selection, and missing data reconstruction problems on

real-world HRTF datasets.
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3.9 Appendix

3.9.1 Kronecker Product Identities

Unitary and binary matrix operations for Kronecker products have structured forms:

(A⊗B)−1 = A−1 ⊗B−1 Inverse-product

(A⊗B)T = AT ⊗BT Transpose-product

A⊗ (B + C) = A⊗B = A⊗ C Bilinearity

(A⊗B)(C ⊗D) = AC ⊗BD Mixed-product

|A⊗B| = |A|p|B|n, A ∈ Rn×n, B ∈ Rp×p Deteminant

tr (A⊗B) = tr (A) tr (B) Trace

Properties of vectorization vec(A) (stacking columns of matrix A):

vec(ABC) = (CT ⊗ A)vec(B) Vectorization 1

= (In ⊗ AB)vec(C)

= (CTBT ⊗ Ik)vec(A), A ∈ Rk×l, B ∈ Rl×m, C ∈ Rm×n

vec(AB) = (Im ⊗ A)vec(B) Vectorization 2

= (BT ⊗ Ik)vec(A), A ∈ Rk×l, B ∈ Rl×m
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3.9.2 Relation to GPLVM

The GPLVM’s data LMH (Eq. 3.14) can be expressed as that of grid GP’s LMH:

log p(Y |X) = −1

2

(
d̃ log |Ĉ|+ tr(Y T Ĉ−1Y ) +N log(2π)

)
,

tr(Y T Ĉ−1Y ) = vec(Y )Tvec(Ĉ−1Y ) by outer product

= yTvec(Ĉ−1Y Id̃)

= yT (Id̃ ⊗ Ĉ
−1)vec(y)

= yT (Id̃ ⊗ Ĉ)−1y

= yT (Id̃ ⊗ C + σ2IN)−1y by bilinearity.

The observation matrix Y ∈ Ñ×˜ in the trace term vectorizes into y ∈ RN=Ñ d̃. The

covariance matrix now consists of d̃ diagonal blocks of the original matrix C as expressed

by the Kronecker product.

3.9.3 Economical DTC

The DTC economical Gram matrix Σ [58] is expanded into products of KTPs with diag-

onal scaling:

Σ = (σ−2KufKfu +Kuu)
−1

= σ2(KufKfu + σ2UZ1/2Z1/2UT )−1

= σ2(UZ1/2(Z−1/2UTKufKfuUZ
−1/2 + σ2I)Z1/2UT )−1

= σ2Ω(Z̄ + σ2I)−1ΩT , Ω = UZ−1/2Ū ,

(3.44)
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for eigendecompositions Z−1/2UTKufKfuUZ
−1/2 = ⊗Di=1ŪiZ̄iŪ

T
i , U = ⊗Di=1Ui and

Z = ⊗Di=1Zi. The data LMH and gradient computations [104] are rearranged for KTVP

operations in terms of matrix Ψ = σ−2Σ and vector t = ΨKufy. The negative log-

marginal likelihood and related terms are

− log q(y|X) =
1

2

(
log |Q̂|+ yT Q̂−1y +N log(2π)

)
,

log |Q̂| = (N −M) log(σ2)− log |Ψ|, |Ψ| = |Z−1||(Z̄ + σ2I)−1|,

yT Q̂−1y = σ−2yT (y −KfuΨKufy) = σ−2yT (y −Kfut).

(3.45)

The negative LMH gradient and related terms for Eqs. 3.19 and 3.15 are given by

−∂log q(y|X)

∂Θi

=
1

2

(
tr

(
Q̂−1 ∂Q̂

∂Θi

)
+
∂yT Q̂−1y

∂Θi

)
,

tr

(
Q̂−1 ∂Q̂

∂Θi

)
= tr

(
2
∂Kuf

∂Θi

KfuΨ

)
− tr

(
∂Kuu

∂Θi

K−1
uuKufKfuΨ

)
,

= 2diag
(
(Z̄ + σ2I)−1

)T diag
(

ΩT ∂Kuf

∂Θi

KfuΩ

)
− diag

(
(Z̄ + σ2I)−1

)T diag
(

ΩT ∂Kuu

∂Θi

K−1
uuKufKfuΩ

)
,

∂yT Q̂−1y

∂Θi

= yTKfuΨ
∂Kuu

∂Θi

ΨTKufy − 2σ−2yT (I −KfuΨKuf )
∂Kfu

∂Θi

ΨTKufy

= tT
∂Kuu

∂Θi

t− 2σ−2(yT
∂Kfu

∂Θi

t− tTKuf
∂Kfu

∂Θi

t).

(3.46)

For the trace term, the diagonals are efficiently computed over the products of KTPs

with diagonal scaling. Only the partial derivative matrix K(l)
uf containing hyperparameter

Θi ∈ Kl(xj, xk) is updated; the other blocks in the products of KTPs KfuKufΩ are fixed.

The cost of the diagonalizations is O
(
M +

∑D
i=1m

{u}2
i (m

{u}
i +mi)

)
operations. For
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the derivative term, the sparsity ratio ρj = m
{u}
j /mj per dimension factors into the cost

of the rectangular KTVPs given by O
(
N
∑D

i=1 m
{u}
i

∏D
j=i+1 ρj

)
operations.

3.9.4 Missing Data DTC

For efficient handling of missing data6 by sparse-grid GPR, one can substitute low-rank

downdates KufKfu − KurKru → KufKfu for terms appearing in matrix Σ and in

the LMH (Eqs. 3.44, 3.45 and 3.46); matrix Kur contains the rth columns of ma-

trix Kuf and zero-columns elsewhere. The rank-downdated economical Gram matrix

Σ̂ = σ2(KufKfu − KurKru + σ2Kuu)
−1 can be expressed in the form of Eq. 3.23

by analogous substitutions to Eq. 3.17 for matrix (KufKfu + σ2Kuu)
−1 → Σ and

Kur → B ∈ RM×R given by

Σ̂ = σ2((KufKfu + σ2Kuu)−KurKru)
−1 = σ2(Ω(Z̄ + σ2I)−1ΩT +B(R)DB(R)T ).

The missing data entries are handled in the subspace spanned by the inducing inputs u; the

costs of computing matrices B(R) and D via Eq. 3.23 are O
(
R2M +RM

∑D
i=1m

{u}
i

)
operations and O (RM) space.

3.9.5 Index Operations

The conversions between the general column index q to its D-KTP column index q̄ are

used for VKTP operations to generate the column update/downdate vectors in the missing

data problem.

6Handling extra data entries is analogous to the missing data case with low-rank updates instead
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Algorithm 7 General column index q to D-KTP column index q̄ (ColToK)
Require: Column sizes m̈i for Kronecker factors [C1 ∈ Rm1×m̈1 , . . . CD ∈ RmD×m̈D ],

general column index q
1: for i = D to 1 do
2: q̄i ← ((q − 1) mod m̈i) + 1
3: q ← ceil(q/m̈i)
4: end for
5: return q̄ ∈ ND

Algorithm 8 D-KTP column index q̄ to general column index q (KToCol)
Require: Column sizes m̈i for Kronecker factors [C1 ∈ Rm1×m̈1 , . . . CD ∈ RmD×m̈D ],

D-KTP column index q̄
1: N ←

∏D
i=1 m̈i

2: s← cumprod(m̈) \\ D-length cumulative product, sj =
∏j

i=1 m̈i

3: s← N/s
4: q ← 1 +

∑D
i=1(q̄i − 1)si

5: return q ∈ N

3.9.6 Spherical Covariance Function Representations

A real continuous function K(γ) is said to be a valid covariance function on the sphere

[96] if and only if it can be expressed as follows:

K(γ) =
∞∑
n=0

bnPn(cos γ), bn ≥ 0,
∞∑
n=0

bn <∞, γ ∈ [0, π], (3.47)

where Pn(cos γ) are the Legendre polynomials, γ the central angle between (θi, φi),

(θj, φj), and bn depends on the choice of the covariance function [95]. The Legendre

addition theorem is given by

Pn(cos γ) =
4π

2n+ 1

n∑
m=−n

Y m
n (θi, φi)Ȳ

m
n (θj, φj), (3.48)

which when combined with Eq. 3.47 gives Eq. 3.36.
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Chapter 4: Heterogeneous HRTF Dataset Fusion via Gaussian Processes

4.1 Introduction

Head-Related Transfer Function (HRTF) measurement and extraction are important tasks

for personalized-spatial audio. 3D audio synthesis is based on the human ability to lo-

calize sound using monaural and binaural cues of how a sound-source’s acoustic wave

scatters off of the listener’s anatomy (torso, head, and outer ears). The ratio of the Fourier

Transform of this wave, measured at the listener’s eardrum to that which would have been

present at the head-center location in the absence of the listener, is called the HRTF [13].

While many research labs have their own apparatuses for measuring HRTFs for human

listeners, very few comparisons have been made between the data measurements col-

lected over common subjects. In theory, such a comparison is unnecessary as ideal HRTFs

would be recorded in a free-field and should not contain the effects of the environment. In

practice, many distortions between HRTF datasets over common subjects can be plainly

observed and which are the cause of a significant amount of inter-lab variance.

To address this problem, a large round-robin activity was organized [105] where

HRTFs are collected over a Neumann KU-100 dummy head by different labs. The col-

lection, referred to as the “Club Fritz” database, contains the mannequin’s HRTF mea-

111



surements1 from 7 different labs. Moreover, each lab used their own measurement ap-

paratuses, which resulted in 7 distinct measurement grids over the spherical coordinate

domain. Fig. 4.1 shows the HRTF measurement grids used by each lab which all vary

substantially over the sphere and thereby making any one-to-one correspondences be-

tween the HRTFs along the same measurement directions difficult.

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 1

1

111
1

1

1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
11

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1
11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1
11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1
1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1
1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1
11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
1

1

1
1
1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1
1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111
1
1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11
1

1

1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111
1
1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111

1

1
1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

33
33

3

3

3

33

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

33

33

3
3
3

3

3

3
3

3

3

3

33

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3
3
33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3333

3

3

3

3

3

33

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

33

3
3

3

3

3

3

3

3

3

3
3
3

33

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

33

33

3

3

3

33
33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

55

5

5

55

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

55

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

55

5

55

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
55
5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5555

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

555

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

555
5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

55
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5
5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

555
5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

55

5

5
5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

55

5

5

5
5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

555

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

55
55

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

55

5

55

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

555

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

555
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5
5

5

5

5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

55

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

777
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

777
7
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7
7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

Azimuth

si
n

(π
/2

−
e
le

v
)

Figure 4.1: Mercator projection of measurement grids are shown for “Club Fritz” Neu-
mann HRTFs. For anonymity, the source institutions are indicated by the lab numbers.

We propose a Bayesian data-fusion method, based on Gaussian process (GP) re-

gression (GPR) [46], to model the underlying sound-field from which all common-subject

HRTFs are drawn from. Formally, a GP is random field f(x) where any finite subset of

its random variables f = {f(x1), . . . , f(xN)} (indexed at inputs x) are jointly Gaussian

and thus defined by prior mean and covariance functions. The GP priors (mean and co-

variance functions) are responsible for the distribution of the realizations of f(x) in the

absence of observations; the mean function can be set to 0 without loss of generality.

1 HRTF measurements are preprocessed by recovering their minimum-phase Head-Related Impulse
Responses (HRIR) to remove time-delay, resampling the HRIR to 44100 kHz, taking the magnitude of the
discrete Fourier transform of the first 256 taps, truncating to the 0−18 kHz range, and scaling the magnitude
range to (0, 1). We use the term HRTF measurement to refer exclusively to HRTF magnitude.
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The covariance function asserts that f(X), at topologically similar indexes X , produces

similar realizations with high probability. In the presence of observations (output) y at in-

dexes X , the random field f(X∗) (test inputs X∗) conditioned on f(X) = y is also jointly

normal and specified by so-called “posterior” mean and covariance functions (see section

4.2 for complete derivation). This gives a probablistic description of the output domain

where observations y can be evaluated in terms of likelihoods of having been drawn from

either prior or posterior distributions.

To apply the GP framework to HRTF measurements, we model the subject’s sound-

field magnitude responses (realizations of f(x)) as a collection of random variables in-

dexed by spherical coordinate (azimuth and elevation) and frequency (wave number) tu-

ples x = (θ, φ, ω). A separable and stationary covariance function is specified over the

spatial-frequency input domains, which coincides with the observation that magnitude

HRTFs are often smooth in both spherical coordinate and frequency domains. For known

HRTF measurements Di =
(
X{i}, y{i}

)
(dataset i), the sound-field f(X∗)|f(X{i}) =

y{i}, X{i}) at any test X∗ (directions and frequencies) is characterized by a posterior nor-

mal distribution. Thus, realizations of the sound-field (conditioned on an HRTF dataset

of N observations) are simply drawn from a N -dimensional joint normal distribution).

This formulation is based on previous works of so-called “grid GP” models [17, 81] and

is equivalent to GP based HRTF interpolation [16, 18].
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4.1.1 Problem Formulation

While specifying a sound-field by a GP conditioned on a single HRTF dataset is feasi-

ble, the likelihoods of sampling the measurements of other datasets from the sound-field

is low. This is due to large inter-lab variances between HRTF measurements at nearby

or identical directions; such variances may have numerous origins from measurement

noise, positioning errors, non-omnidirectional directivity patterns, temperature depen-

dent equipment transfer function drifts, from incompatible free-field equalizations etc.

The problem of data-fusion can thus be formulated as learning a set of transformations

(representing one or more of the above origins) for each dataset that brings it closer to

a reference sound-field. The reference sound-field has numerous instantiations such as

GPs conditioned on the elements of the powerset of datasets {D1 . . . ,D7}; two notable

cases are the sound-fields belonging to individual datasets and the averaged sound-field

generated from the HRTF superset. Furthermore, learning the transformations can follow

several optimization techniques (e.g. maximum likelihood of sampling from the poste-

rior reference sound-field, maximum log-marginal likelihood (LMH) (see section 4.2) of

sampling both reference and transformed datasets from a common prior reference sound-

field). This work uses individual dataset sound-fields and the LMH objective function to

optimize transformations.

Two transformations belonging to the category of “incompatible free-field equaliza-

tions” are learned: The first transform is frequency-domain equalization where all HRTFs

are multiplied (point-wise) by a filter (see section 4.3.1). Equalization filters are com-

monly applied to source-signals to either suppress a range of frequencies or to add ad-
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ditional gain; some labs may have used this technique to remove low frequencies (the

effects of torso and shoulder reflections) and to compensate (remove) the measurement

apparatuss’ transfer functions. The second transform is time-domain windowing, which

is equivalent to the convolution operation with a filter performed in the frequency-domain

(treated as if time-domain) (see section 4.3.2). This technique is commonly used to re-

move the effects of late reflections that would have been caused by sound scattering off

of distant objects such as ground/walls. In both cases, the filter coefficients belonging

to each dataset w.r.t. the reference dataset are jointly learned. Moreover, it is shown

that these two transformations generalize most of the variances between inter-lab mea-

surement processes; experiments show that sound-fields specified over the transformed

datasets and similar to the that of the reference datasets compared to non-transformed

cases (see section 4.4).

4.2 Gaussian Process Regression

In a general regression problem, one predicts a scalar target variable y from aD-dimensional

vector x of independent variables based on a collection of available observations (mea-

surements). In a parametric model, the problem is one of estimating model parameters

based on the data. When a parametric model is unknown, a common Bayesian approach

of inference assumes that observations y are generated by an unknown (latent) function

f(x) and is corrupted by additive (Gaussian) noise y = f(x) + ε, ε ∼ N (0, σ2) (noise

term ε is zero centered with constant variance σ2).

For a GP f , the latent function is modeled as random variables where any finite
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collection f = [f(x1), f(x2), . . . , f(xN)], indexed at X = [x1, . . . , xN ], has a joint N -

dimensional normal distribution that is specified by the prior mean function m(x) and

covariance function K(xi, xj). The prior mean m(x) can be specified as 0 without loss of

generality. The covariance function generates a covariance (Gram) matrix Kff ∈ RN×N ,

representing the pair-wise covariance function evaluations between inputs in X . For N

number of random variables f at known inputs X and N∗ number of random variables

f∗ = f(X∗) at test inputs X∗, the joint-prior distribution is given by

 f + ε

f∗

 ∼ N
m(x),

 K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)


 , (4.1)

for matrices Kf∗ = K(X,X∗) ∈ RN×N∗ , and K∗∗ = K(X∗, X∗) ∈ RN∗×N∗ . GP in-

ference simply conditions the random variables f∗ on f + ε = y (Eq. 4.1), which has a

N∗-dimensional posterior joint normal distribution given by

f∗|X, y,X∗ ∼ N (f̄∗, cov (f∗)),

f̄∗ = E[f∗|X, y,X∗] = KT
f∗K̂

−1y, cov (f∗) = K∗∗ −KT
f∗K̂

−1Kf∗.

(4.2)

Thus, GPs provides a probabilistic description of f over entire input domain and is able

to report the expected means (posterior mean vector f̄∗) and the confidence (posterior

covariance matrix cov (f∗)) at X∗ in the presence of data.
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4.2.1 Spatial-Frequency Covariance Functions for Sound-Fields

The choice of the prior covariance functionK determines the “smoothness/correlatedness”

of latent function realizations f(X) at nearby X . The goodness-of-fit of observations y

w.r.t. the GP prior assumptions can be evaluated by marginalizing the data likelihoods (y

from f(x)+ ε) and priors (realizations of f(x) drawn from the GP prior distribution) over

all possible realizations of f(x); this quantity is the so-called data LMH and obtains an

analytic form that is useful for evaluating the selection of covariance functions. Moreover,

covariance functions can be further characterized by their hyperparameters (Θi) and op-

timized by maximizing the data LMH via hill-climbing methods such as steepest ascent.

Both the LMH and its partial derivative w.r.t. Θi are given by

log p(y|X) = −1

2

(
log |K̂|+ yT K̂−1y +N log(2π)

)
,

∂log p(y|X)

∂Θi

= −1

2

(
tr
(
K̂−1P

)
− yT K̂−1PK̂−1y

)
,

(4.3)

where matrix P = ∂K̂/∂Θi.

For sound-fields characterized by the GP magnitude frequency responses f∗ at

x∗ = (θ∗, φ∗, ω∗), it is possible to specify the covariance function as a product of separable

(functions restricted to different domains) covariance functions on spherical-coordinate

and frequency domains [16, 18]. Moreover, HRTF inputs have the unique parameteri-

zation given by the Cartesian outer-product X = X(θφ) × X(ω). This allows the Gram
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matrix Kff to be expressed by so-called Kronecker tensor products (KTP) [57] given by

Kff = K1(X(θφ), X(θφ))⊗K2(X(ω), X(ω)), (4.4)

between covariance evaluations restricted to inputs in X(θφ) and X(ω) respectively. Effi-

cient KTP matrix algorithms for GP inference and hyperparameter training can also be

found in [17, 81].

We adopt the stationary covariance functionK(Ch, r) = K1(Ch)K2(r) of the prod-

uct of the Matérn (ν = 3/2) covariance functions [46] for Chordal distance Ch and the

spectral density of the Ornstein-Uhlenbeck (OU) auto-covariance [94] for frequency dis-

tance r = |ωi − ωj| given by

K1(Ch) =

(
1 +

√
3Ch
`

)
e−
√

3Ch
` , K2(r) =

2α2λ2

λ2 + r2
,

Ch = 2

√
sin2

(
θj − θi

2

)
+ sin θi sin θj sin2

(
φi − φj

2

)
.

(4.5)

Hyperparameters α, λ, and ` are the global-scale factor, the rate of mean drift to 0 in

the OU process, and the characteristic length-scales2 respectively. Other combinations

of covariance products including Matérn ν = {1/2, 5/2,∞} lead to lower data-LMH

estimates in Eq. 4.3 by individual datasets Di after hyperparameter training.

2Zero-crossings of 1D functions drawn from the GP prior with mean 0
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4.3 Data Fusion and Transformations

We first establish notation as follows: For T = 7 number of HRTF datasets, let inputs

X =
{
X{1}, . . . , X{T}

}
correspond to observations y =

[
y{1}; . . . ; y{T}

]
. Let function

gt(y) with parameters Θ{t} transform all but the reference dataset (y{i}∀i 6= T s.t. y{t}

remains constant); Θ{t} contains separate filter coefficients for each dataset Di 6=t.

The sound-field is specified as follows: A reference GP is initially specified on

only dataset Dt and its covariance function is trained (hyperparameters Θ
{K,t}
i are opti-

mized via Eq. 4.3). A second GP, representing the fused sound-field, is specified on the

non-transformed data (X, y) with the reference GP’s covariance function (transformation

parameters produce the identity operation). The transformation parameters are optimized

by maximizing the sound-field GP’s LMH (via partial derivative) given by

Lt = −1

2

(
log |K̂|+ gt(y)Tγ +N log(2π)

)
, γ = K̂−1gt(y),

∂Lt
∂Θ
{t}
i

= −γT ∂gt(y)

∂Θ
{t}
i

.

(4.6)

After the transformation parameters are trained, the fused sound-field is thus given by

the GP conditioned on the transformed data (X, gt(y)); if the transformations are able to

model the inter-data variances, then the GP posterior distribution will be similar to that of

the reference GP. The full process is shown in Fig. 4.2. The two types of transformations

are described below.
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HRIR datasets 
Preprocess HRTF 

Inputs X, Observations y 

For target t = 1:T  
GP ft (X, gw,t (ge,t (y, Θe

{t,:,2}), Θw
{t,:,2}), Θ{K}) 

For target t = 1:T   
GP ft (X {t}, y {t}, Θ{K,t}) 

For source i = 1:T 
Train windowing 

parameters Θw
{t,i,2}  

Train hyperparameters 
Θ{K,t} 

For source i = 1:T 
Train equalization 
parameters Θe

{t,i,2} 

 Inference at X* = (θ,φ,ω) 

Figure 4.2: Reference GPs are trained and whose covariance function is reused for a sec-
ond GP specified over the combined datasets. The transformation filter coefficients are
trained and the fused sound-field is given by the second GP conditioned on the trans-
formed datasets.

4.3.1 Equalization-Transform

The equalization-transform applies (diagonal-matrix vector product) a common separable

filter to the measurements in the spatial-frequency domains given by

gt(y) = diag
[
Φ
{1}
t , . . . ,Φ

{t−1}
t , 1Nt ,Φ

{t+1}
t , . . . ,Φ

{T}
t

]
y,

Φ
{i}
t =

(
Θ{t,i,1} ⊗Θ{t,i,2}

)
∈ R|X

{i}
θφ ||X

{i}
ω |.

(4.7)

Constant filter coefficients, 1Nt ∈ RNt , are set to the vector of ones as to perform the iden-

tity transform on the reference dataset Y {t}. Variable filter coefficients Φ
{i}
t are Kronecker

diagonal-products between filter the spatial filter coefficients Θ{t,i,1} and the frequency fil-

ter coefficients Θ{t,i,2}. To optimize these coefficients, we can maximize the LMH via the

partial derivatives of transform gt(y) w.r.t. the filter coefficients (u = ∂gt(y)/∂Θ
{t,i,1}
j
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and v = ∂gt(y)/∂Θ
{t,i,2}
j ) given by

u = diag

[
0N1 , . . . , 0Nt−1 ,

∂Φ
{i}
t

∂Θ
{t,i,1}
j

, 0Nt+1 , . . . , 0NT

]
y,

v = diag

[
0N1 , . . . , 0Nt−1 ,

∂Φ
{i}
t

∂Θ
{t,i,2}
j

, 0Nt+1 , . . . , 0NT

]
y,

∂Φ
{i}
t

∂Θ
{t,i,1}
j

= ej ⊗Θ{t,i,2},
∂Φ
{i}
t

∂Θ
{t,i,2}
j

= Θ{t,i,1} ⊗ ej,

(4.8)

where ei the ith column of the identity matrix.

If the spatial filter coefficients (Θ{t,i,1} = 1|X
{i}
θφ | ) are fixed, then optimizing for the

frequency coefficients (Θ{t,i,2}) can be interpreted as equalizing all magnitude HRTFs in

dataset Di by a common filter. Conversely, fixing the frequency cofficients (Θ{t,i,2} =

1|X
{i}
ω |) and optimizing for spatial filter coefficients (Θ{t,i,1}) uniquely scales the full mag-

nitude spectrum for each measurement direction in dataset Di.

Optimizing the filter coefficients is efficient as the LMH Lt is quadratic w.r.t. each

Θ
{t,i,1}
j and Θ

{t,i,2}
j . Setting the partial derivatives in Eq. 4.6 to zero, their solutions are

given by

Θ
{t,i,1}
j = −gt(y)Tu K̂

−1u

uT K̂−1u
, Θ

{t,i,2}
j = −gt(y)Tv K̂

−1v

vT K̂−1v
, (4.9)

where gt(y)u = gt(y)−Θ
{t,i,1}
j u and gt(y)v = gt(y)−Θ

{t,i,2}
j v. Thus, the filter coefficient

parameters will quickly converge as the LMH Lt monotonically increases.
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4.3.2 Window-Transform

The window-transform simulates time-domain windowing (point-wise product) by the

equivalent convolution operation in the frequency domain. The convolution operation

can me formulated as a symmetric Toeplitz-matrix vector product given by

gt(y) = bdg
[
Φ
{1}
t , . . . ,Φ

{t−1}
t , INt ,Φ

{t+1}
t , . . . ,Φ

{T}
t

]
y,

Φ
{i}
t = Tps

(
Θ{t,i,1}

)
⊗ Tps

(
Θ{t,i,2}

)
,

(4.10)

where bdg [A1, A2] generates a block-diagonal matrix whose diagonal elements are square

matrices A1 and A2 and the off-diagonal elements are 0’s. The filter coefficients (Φ{i}t )

are given by Kronecker products of symmetric-Toeplitz matrices Tps (a)jk = a|j−k|+1

generated from the spatial filter coefficients (Θ{t,i,1}) and the frequency filter coefficients

(Θ{t,i,2}) (identical to Eq. 4.7).

Optimizing these filter cofficients (maximizing LMH) is efficient as the formu-

lation is analogous to that of the equalization transform in section 4.3.1. The partial

derivatives of the transformation w.r.t. the spatial and frequency filter cofficients (u =

∂gt(y)/∂Θ
{t,i,1}
j and v = ∂gt(y)/∂Θ

{t,i,2}
j ) are given by

u = bdg

[
0N1 , . . . , 0Nt−1 ,

∂Φ
{i}
t

∂Θ
{t,i,1}
j

, 0Nt+1 , . . . , 0NT

]
y,

v = bdg

[
0N1 , . . . , 0Nt−1 ,

∂Φ
{i}
t

∂Θ
{t,i,2}
j

, 0Nt+1 , . . . , 0NT

]
y,

∂Φ
{i}
t

∂Θt,i,1
j

= Tps (ej)⊗ Tps
(
Θ{t,i,2}

)
,

∂Φ
{i}
t

∂Θt,j,1
j

= Tps
(
Θ{t,i,1}

)
⊗ Tps (ej) ,

(4.11)
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where 0Ni ∈ RNi×Ni is the zero-matrix. The local solutions for each filter coefficient has

the closed-form expression identical to Eq. 4.9 after the appropriate substitutions.

4.3.3 Composition

It is possible to specify the a transformation function as the composition of the window-

transform gw,t (Eq. 4.10) and the equalization-transform ge,t (Eq. 4.7) given by

gt(y) = gw,t(ge,t(y)). (4.12)

The filter coefficients can be optimized by modifying Eq. 4.9: For window coefficients

Θ
{t}
w ∈ gw,t, observation vector y is replaced with ge,t(y) in Eqs. 4.10 and 4.11. For

equalization filter coefficients Θ
{t}
e ∈ ge,t, both the partial derivatives ∂Φ

{i}
t /∂Θt,i,1

j and

∂Φ
{i}
t /∂Θt,j,1

j in Eq. 4.8 are left-multiplied by parameters Φ
{i}
t from Eq. 4.10.

4.4 Experiments

For computational costs, we abridge the HRTF measurements to those restricted to the

horizontal and median planes. Reference sound-fields are specified for each dataset. The

reference GP’s covariance function hyperparameters are optimized for 100 iterations (Eq.

4.3). The compote transform (Eq. 4.12) is specified and its filter coefficients are initialized

to perform the identity operation (Θ{t,i,1}e = 1
|X
θφ{i} |, Θ

{t,i,2}
e = 1|Xω{i} |, Θ

{t,i,1}
w = e1, and

Θ
{t,i,2}
w = e1). Filter cofficients are then trained (Eq. 4.6) for 5 iterations for all source

and reference datasets Di.
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Figs. 4.3 and 4.4 show both the original datasets and fused sound-fields (GP poste-

rior magnitude response means) along the horizontal and median plane directions. Large

variances between the datasets are apparent; the presence of torso and shoulder reflec-

tions (low frequency response along plots row 1 columns 1, 4 ) is present in two of the

labs. High frequency responses are suppressed in two of the labs (row 1 columns 3, 6 and

row 4 columns 3, 7). The fused sound-fields (rows 3, 6), specified on the transformation

datasets, are similar to the reference sound-fields (rows 1, 4).

Figure 4.3: Plots in row 1 are the reference HRTFs (labs 1 − 7) on horizontal plane (x-
axis −π < φ < π and y-axis 0 < ω < 18 kHz). Plots along different columns refer to
the reference dataset in row 1. Rows 2 and 3 are the sound-fields (GP predicted magni-
tude response means conditioned on non-transformed datasets and transformed datasets
respectively).

The fused sound-fields can be evaluated against the reference sound-field by com-

paring their respective GP posterior magnitude response means (f̄∗ in Eq. 3.5) evaluated

at the reference inputs X{t}. One metric is the signal-to-distortion ratio (SDR) given by

SDRω = 10 log10

∑N∗
i=1Hω(θi, φi)

2∑N∗
i=1(Hω(θi, φi)− Ĥω(θi, φi))2

, (4.13)
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Figure 4.4: Plots in row 1 are the reference HRTFs (labs 1, 2, 3, 5, 6, 7) on median plane
(x-axis −π < θ < π and y-axis 0 < ω < 18 kHz). Plots along different columns refer to
the reference dataset in row 1. Rows 2 and 3 are the sound-fields (GP predicted magni-
tude response means conditioned on non-transformed datasets and transformed datasets
respectively).

whereHω(θi, φi) = yω,θi,φi is the reference magnitude responses and Ĥω(θi, φi) = f̄ω,θi,φi

is the predicted mean responses.

Figs. 4.5 and 4.6 show that the SDRs of the fused sound-field’s after learning the

transformations, are larger (lower error) than that of the non-transformed ones across most

frequency bands for horizontal and median planes respectively. Larger SDR discrepan-

cies between median-plane HRTFs3 than that of the horizontal-plane for transformed and

control cases may suggest greater measurement sensitivities along the former directions.

Fused dataset target plots {6, 5} and {6, 7} have the highest SDRs relative to the con-

trol. The equalization weights for each frequency appear continuous in log-space. The

window weights exhibit periodicity similar to window functions in the Fourier domain.

Moreover, both the window and equalization weights learned for median and horizontal

3One horizontal-plane only dataset was omitted as a median-plane target.
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plane HRTFs of same target Dt are similar and thus consistent over two different regions

of the sphere.

Figure 4.5: Rows 1 and 2 show the horizontal-plane-trained window-filter coefficients
(after min-phase reconstruction into time-domain) and the equalization-transform coeffi-
cients (absolute log-space) respectively; Row 3 show the SDRs (w.r.t. column i reference
datasets) of various sound-fields specified on different datasets: reference +, the non-
transformed *, and transformed x.

4.5 Conclusions

We have presented a joint spatial-frequency GP fusion method for modeling common-

subject sound-fields using HRTFs and linear transformations of HRTFs. Window and

equalization transforms are specified an automatically learned for horizontal and median-

plane “Club Fritz” HRTF measurements, which characterize inter-dataset measurement

process variances. This is verified in experiments where the sound-fields specified on

the transformed datasets are much closer to reference sound-fields than non-transformed

ones. Future work will consider non-linear transformations between HRTFs over the full

sound-field.
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Figure 4.6: Rows 1 and 2 show the median-plane-trained window-filter coefficients (after
min-phase reconstruction into time-domain) and the equalization-transform coefficients
(absolute log-space) respectively; Row 3 show the SDRs (w.r.t. column i reference
datasets) of various sound-fields specified on different datasets: reference +, the non-
transformed *, and transformed x.
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Chapter 5: Efficient Multicore Non-negative Least Squares

5.1 Introduction

A central problem in data-modelling is the optimization of underlying parameters spec-

ifying a linear model used to describe observed data. The underlying parameters of the

model form a set n variables in a n × 1 vector x = {x1, · · · , xn}T . The observed data

is composed of m observations in a m × 1 vector b = {b1, · · · , bm}T . Suppose that the

observed data are linear functions of the underlying parameters in the model, then the

function’s values at data points may be expressed as a m × n matrix A where Ax = b

describes a linear mapping from the parameters in x to the observations in b.

In the general case where m ≥ n, the dense overdetermined system of linear equa-

tions may be solved via a least squares approach. The usual way to solve the least squares

problem is with theQR decomposition of the matrixAwhereA = QR, withQ an orthog-

onal m×n matrix, and R an upper-triangular n×n matrix. Modern implementations for

general matrices use successive applications of the Householder transform to form QR,

though variants based on Givens rotation or Gram-Schmidt orthogonalization are also vi-

able. Such algorithms carry an associated O(mn2) time-complexity. The resulting matrix

equation may be rearranged to Rx = QT b and x solved via back-substitution.

Sometimes, the underlying parameters are constrained to be non-negative in order
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to reflect real-world prior information. When the data is corrupted by noise, the estimated

parameters may not satisfy these constraints, producing answers which are not usable. In

these cases, it is necessary to explicitly enforce non-negativity, leading to the non-negative

least squares (NNLS) problem considered in this paper.

The seminal work of Lawson and Hanson [59] provide the first widely used method

for solving this non-negative least squares problem. This algorithm, later referred to as

the active-set method, partitions the set of parameters or variables into the active and

passive-sets. The active-set contains the variables with values forcibly set to zero and

which violate the constraints in the problem. The passive-set contains the variables that

do not violate the constraint. By iteratively updating a feasibility vector with components

from the passive-set, each iteration is reduced to an unconstrained linear least squares

sub-problem that is solvable via QR.

For many signal processing applications, NNLS problems in a few hundred to a

thousand variables arise. In time-delay estimation for example, multiple systems are con-

tinuously stored or streamed for processing. A parallel method for solving multiple NNLS

problems would enable on-line applications, in which the estimation can be performed as

data is acquired. Motivated by such an application, we develop an efficient algorithm and

its implementations on both multi-core CPUs and modern GPUs.

Section 5.1.2 summarizes alternative solutions to the NNLS problem. Section 5.2

establishes notation and formally describes the active-set algorithm. Section 5.3 presents

a new method for updating the QR decompositions for the active-set algorithm. Sections

5.4-5.5 describe parallelism on multi-core CPUs and GPU like architectures. Section 5.6

provides a motivating application from remote estimation and section 5.7 compares the
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GPU and CPU results from experiments.

5.1.1 Non-negative Least Squares

We formally state the NNLS problem: Given a m × n matrix A ∈ Rm×n, find a non-

negative n× 1 vector x ∈ Rn that minimizes the functional f(x) = 1
2
‖Ax− b‖2 i.e.

minx f(x) = 1
2
‖Ax− b‖2, xi ≥ 0. (5.1)

The Karush-Kuhn-Tucker (KKT) conditions necessary for an optimal constrained solu-

tion to an objective function f(x) can be stated as follows [106]: Suppose x̂ ∈ Rn is

a local minimum subject to inequality constraints gj(x) ≤ 0 and equality constraints

hk(x) = 0, then there exists vectors µ, λ such that

5f(x̂) + λT 5 h(x̂) + µT 5 g(x̂) = 0, µ ≥ 0, µTg(x̂) = 0. (5.2)

To apply the KKT conditions to the minimization function in Eq. 5.1, the gradient

5f(x) = AT (Ax− b), gj(x) = −xj , and hk(x) = 0 leads to the necessary conditions

µ = 5f(x̂), 5f(x̂)T x̂ = 0, 5f(x̂) ≥ 0, x̂ ≥ 0, (5.3)

that must be satisfied at the optimal solution.
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5.1.2 Survey of NNLS Algorithms

A comprehensive review of the methods for solving the NNLS problem can be found

in [107]. The first widely used algorithm, proposed by Lawson and Hanson in [59], is

the active-set method that we implement on the GPU. Although many newer methods

have since surpassed the active-set method for large and sparse matrix systems from our

survey, the active-set method remains competitive for small to moderate sized systems

with unstructured and dense matrices.

In [108], improvements to the original active-set method are developed for the

Fast NNLS (FNNLS) variant. By reformulating the normal equations that appear in the

pseudo-inverse for the least squares sub-problem, the cross-product matrices ATA and

AT b can be pre-computed. This contribution leads to significant speed-ups in the presence

of multiple right-hand-sides. In [109], further redundant computations are avoided by

grouping similar right-hand-side observations that would lead to similar pseudo-inverses.

A second class of algorithms is iterative optimization methods. Unlike the active-

set approach, these methods are not limited to a single active constraint at each iteration.

In [110], a Projective Quasi-Newton NNLS approach uses gradient projections to avoid

pre-computing ATA and non-diagonal gradient scaling to improve convergence and re-

duce zigzagging. Another approach in [111] produces a sequence of vectors optimized

at a single coordinate with all other coordinates fixed. These vectors have an efficiently

computable analytical solution that converge to the solution.

Other methods outside the scope of this review include the Principal Block Pivoting

method for large sparse NNLS in [112], and the Interior Point Newton-like method in

131



[113], [114] for moderate and large problems.

5.2 Active-set Method

Given a set ofm linear equations in n unknowns which are constrained to be non-negative,

let the active-set Z be the subset of variables which violate the non-negativity constraint

or are zero and the passive-set P be the variables with positive values. Lawson and

Hanson observe that only a small subset of variables remains in the candidate active-set

Z at the solution. If the true active-set Z is known, then the NNLS problem is solved by

an unconstrained least squares problem using the variables from the passive-set.

Algorithm 9 Active-set method for non-negative least squares [59]
Require: A ∈ Rm×n, x = 0 ∈ Rn, b ∈ Rm, set Z = {1, 2, . . . , n} , P = ∅
Ensure: Solution x̂ ≥ 0 s.t. x̂ = arg min1

2
‖Ax− b‖2

1: while true do
2: Compute negative gradient w = AT (b− Ax)
3: if Z 6= ∅ and maxi∈Z(wi) > 0 then
4: Let j = arg maxi∈Z(wi)
5: Move j from set Z to P
6: while true do
7: Let matrix AP ∈ Rm×∗ s.t. AP = {columns Ai s.t. i ∈ P}
8: Compute least squares solution y for APy = b
9: if min(yi) ≤ 0 then

10: Let α = −mini∈P ( xi
xi−yj ) s.t. (column j ∈ AP ) = (column i ∈ A)

11: Update feasibility vector x = x+ α(y − x)
12: Move from P to Z, all i ∈ P s.t. xi = 0
13: else
14: Update x = y
15: break
16: end if
17: end while
18: else
19: return x
20: end if
21: end while
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In Algorithm 9, the candidate active-set Z is updated by first moving the largest

positive component variable in the negative gradient w to the passive-set (line 5). This

selects the component with the most negative gradient that reduces the residual 2-norm.

The variables in the passive-set form a candidate linear least squares system APy = b

where matrix AP contain the column vectors in matrix A that correspond to indices in

the passive-set (lines 7, 8). At each iteration, the feasibility vector x moves towards the

solution vector y while preserving non-negativity (line 11). Convergence to the optimal

solution is proven in [59].

The termination condition (line 3) checks if the gradient is strictly positive or if the

residual can no longer be minimized. At termination, the following relations satisfy the

optimality conditions in Eq. 5.3:

1. wi ≤ 0 i ∈ Z termination condition (line 3).

2. wi = 0 i ∈ P solving least squares sub-problem (line 8).

3. xi = 0 i ∈ Z updating sets (line 12).

4. xi > 0 i ∈ P updating x (lines 10-11).

The variables in the passive-set form the corresponding columns of the matrix AP

in the unconstrained least squares sub-problem APy = b. As discussed previously, the

cost of solving the unconstrained least squares sub-problem is O(mn2) via QR. If there

are k iterations, then the cost of k independent decompositions is O(kmn2). However,

the decompositions at each iteration share a similar structure in matrix AP , and this can

be taken advantage of. We observe the following properties of matrix AP as the iterations
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proceed:

1. The active and passive-sets generally exchange a single variable per iteration; one

column is added or removed from matrix AP .

2. Most exchanges move variables from the active-set into the passive-set; early itera-

tions add variables to an empty passive-set to build the feasible solution, while later

iterations add and remove variables to refine the solution.

Hence, we develop a general method for QR column updating and downdating that takes

advantage of the pattern of movement between variables in the active and passive-sets.

To achieve real-time and on-line processing, the method must be parallelizable on GPUs

or other multi-core architectures. We note that the improvements made to the active-set

NNLS proposed in [108], [109] do not apply to our problem, and moreover do not account

for possible efficiencies suggested by the observations above.

5.3 Proposed Algorithm

The first property of matrix AP suggests that a full AP = QR decomposition is unneces-

sary. Instead, we consider an efficient QR column updating and downdating method.

1. QR Updating: A new variable added to set P expands matrix AP by a single col-

umn. Update previous matrices Q, R with this column insertion.

2. QR Downdating: The removal of a variable from set P shrinks matrix AP by a

single column. Downdate previous matrices Q, R with this column deletion.
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The second property of matrixAP suggests that we can optimize the cost forQR updating

in terms of floating point operations (flops) and column or row memory accesses. We ob-

serve that many QR updating methods minimize computations when inserting columns

at the right-most index. Our method takes advantage of this by maintaining a separate

ordering for the columns of matrix AP by the relative times of insertions and deletions

across iterations. That is, a column insertion always appends to the end of a reordered

matrix ÂP . We describe the effects of the reordering strategy for various updating meth-

ods in sections 5.3.1-5.3.3. We also show that the modified Gram-Schmidt and Givens

rotation methods are the most cost efficient with respect to the reordering strategy for

overdetermined and square systems.

5.3.1 QR Updating by Modified Gram-Schmidt

The reordering strategy allows a new column ai from the matrixAP = [a1, · · · , ai, · · · , an]

to be treated as the right-most column in the decomposition. We define list P̂ as an or-

dered list of column indices from set P such that the associated column p̂i−1 is added in

a prior iteration to column p̂i. The reordered decomposition ÂP = Q̂R̂ is

ÂP = [ap̂1 , · · · , ap̂i−1
, ap̂i ], Q̂ = [qp̂1 , · · · , qp̂i−1

, qp̂i ], R̂ = [rp̂1 , · · · , rp̂i−1
, rp̂i ],

(5.4)

where Q̂ is a m × i matrix and R̂ is an i × i matrix. To compute column qp̂i , we or-

thogonalize the inserted column ai with all the previous columns in matrix Q̂ via vector

projections. To compute column rp̂i , we take the inner products between column ai and
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columns in Q̂, or the equivalent matrix-vector product Q̂Tai. Both quantities are found

using the Modified Gram-Schmidt (MGS) procedure in Algorithm 10.

Algorithm 10 Reordered MGS QR Column Updating

Require: Reordered list P̂ contains the elements in set P , index i the variable added to
set P , column ai the new column in AP , columns qj ∈ Q

Ensure: ÂP = Q̂R̂, update vector Q̂T b, list P̂
1: Let vector u = ai
2: for all column index k ∈ list P̂ do
3: u = u− 〈qk, u〉qk
4: R̂ki = 〈ai, qk〉
5: end for
6: qi = u

‖u‖

7: R̂ii = ‖u‖
8: Q̂T bi = 〈qi, b〉
9: Add i to list P̂

With the reordering strategy in Algorithm 10, a new column ai is always inserted

in the right-most position of matrix ÂP . The number of columns read from memory in

matrix Q̂ is the size of set P , denoted as ` ≤ n and is used to form column qi. The

number of column memory writes per step is two, as column qi appends to matrix Q̂

and the projection step writes a single column to matrix R̂. Updating matrices Q̂ and R̂

requires 6m`+ 3m+ 1 flops. The asymptotic complexity is O(mn).

Without the reordering strategy, column ai can be inserted into the middle of matrix

ÂP . This requires computing column qi the re-orthogonalization of the ` − i columns to

its right. The memory access costs of computing qi is i number of columns reads from

matrix Q̂ and two columns writes to matrices Q̂ and R̂. The re-orthogonalization costs of

column qj where j > i is equivalent to a new column insertion into matrix AP . This is

because the MGS method does not compute the null-space of the basis vectors in matrix

Q̂. Orthogonalizing columns qj and qj+1 with respect to column qi does not preserve the

136



orthogonality between qj and qj+1. Thus, each of the `− i+1 columns must be reinserted

with an additional `(` − i + 1) column reads and 2(` − i + 1) column writes. Updating

matrices R̂ and Q̂ requires a total of (3m` + 3mi + 1)(` − i + 2) flops. The asymptotic

complexity is O(mn2).

5.3.2 Alternative QR Updating by Rotations

Rotation based methods for updating QR are possible. In [115], Q̂ and R̂ are treated

as m × m matrices where matrix Q̂ is initially the identity. When inserting column ai,

the method appends m × 1 column vector rp̂i = Q̂Tai to matrix R̂. A series of rotation

transformations introduces zeros to rows {i+ 1, i+ 2, · · · ,m} of column rp̂i to preserve

the upper-triangular property. The rotation transformations then update the columns to

the right of index i in matrices R̂ and Q̂. A similar step follows updating the right-hand

side Q̂T bi.

Without the reordering strategy, the costs of this rotation method depend on index

i. Column rp̂i requires m− i rotation transformations. Each transformation requires two

row memory reads and writes to matrix R̂ and two column memory reads and writes to

matrix Q̂ for a total of 2(m − i). This is disadvantageous as the number of column and

row accesses is bound by m and multiple columns and rows of matrices R̂ and Q̂ are

modified. Updating matrix Q̂ and R̂ requires 6m(m− i) and 2m2 + 8(m− i) + 6(`− i+

1)(`/2− i/2− 1) flops respectively. The asymptotic complexity is O(m2 + n2).

With the reordering strategy, index i = `+ 1 and so many of the costs are reduced.

There are no columns to the right of index i in matrix R̂ so updating is limited to single
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column memory write of column rp̂i . Updating matrix Q̂ now requires m− `− 1 column

reads and writes each while applying the transformations. Updating matrices Q̂ and R̂

requires 6m(m − ` − 1) and 2m2 + 8(m − ` − 1) flops respectively. The asymptotic

complexity is O(m2).

5.3.3 Alternative QR Updating by Semi-normal Equations

The corrected semi-normal equations (CSNE) can be used to update a ` × ` matrix R̂

without the construction of matrix Q̂. The stability analysis of this method is provided

by [116]. With the reordering strategy, the problem treats R̂T R̂x = ÂP b where column

rp̂i is computed by

R̂T R̂z = ÂPai, s = ai − ÂP z, R̂T R̂δz = s, z = z + δz, rp̂i =

 R̂z

‖ÂP z − ai‖

 .
(5.5)

Although the method does not compute and store matrix Q̂, it requires both row and

column access to matrix R̂ and more operations to produce column rp̂i . Computing and

correcting for vector z entails four back-substitutions using matrices R̂T , R̂, and ÂP . All

four back-substitutions requires ` row or column memory reads from matrix R̂ each. Two

of the back-substitutions require m row memory reads from matrix ÂP . The total number

of column and row memory reads in the method is 3m + 2` and one column memory

write to update matrix R̂. The entire procedure requires 6m2 + 4m+ 1 + 3`2 + 3` flops.

The asymptotic complexity is O(m2 + n2).
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Without the reordering strategy, the same CSNE method computes column rp̂i and

a series of rotations introduces zeros below index i. The rotation transformations are then

applied to the columns to the right of index i in matrix R̂. This requires an additional `− i

row memory reads and writes to matrix R̂ each and 6(`− i+ 1)(`/2− i/2− 1) + 3(`− i)

flops. The asymptotic complexity is O(n2). The costs for the updates are summarized in

Table 5.1.

5.3.4 QR Downdating by Rotations

The reordering strategy is less applicable to the downdating scheme as deleted columns

may not be in the right-most index. Suppose that column ai is removed from matrix

AP = [a1, · · · , ai−1, ai+1, · · · , an]. Let p̂j be the corresponding column index in the

ordered list. We consider the reformulation of Eq. 5.4 without column p̂j as

ÃP = [ap̂1 , · · · , ap̂j−1
, ap̂j+1

, · · · , ap̂i ], Q̃ = [qp̂1 , · · · , qp̂j−1
, qp̂j , qp̂j+1

, · · · , qp̂i ],

R̃ = [rp̂1 , · · · , rp̂j−1
, rp̂j+1

, · · · , rp̂i ],
(5.6)

where ÃP = Q̃R̃, matrices ÃP and R̃ are missing column p̂j , and matrix Q̃ = Q̂ is

unchanged. Column qp̂j still exists in matrix Q̃ and matrix R̃ is no longer upper-triangular

as the columns to right of index p̂j have shifted left.

Observe that right sub-matrix shifted in matrix R̃ has a Hessenberg form. In [117],

a series of Givens rotations introduces zeros along the sub-diagonal. However, this does

not directly address the removal of column p̂j in matrix Q̃. Instead, we apply a series

of Given rotations to introduce zeros along the jth row of matrix R̃. The rotations are
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applied to the right of column p̂j in the transformation

ÃP = Q̃(
i∏

k=j

GT
k )(

j+1∏
k=i

Gk)R̃,

(
j+1∏
k=i

Gk

)
R̃ =



. . .

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

· · · 0 0 0 0 · · ·

0 0 ∗ ∗

0 0 0 ∗

. . .



, (5.7)

which preserves ÃP = Q̃R̃ while introducing zeros along the jth row of matrix R̃ and

modifying matrix Q̃. This enables both row j in the updated matrix R̃ and column j in

updated matrix Q̃ to be removed without violating matrix ÃP . Vector Q̃T b is updated via

a similar transformation.

Algorithm 11 Reordered QR Column Downdating with Givens Rotations

Require: Reordered list P̂ contains the elements in set P , index i is the variable removed
from set P

Ensure: ÃP = Q̃R̃, update vector Q̃T b, list P̂
1: for all column indices k following (�) index i ∈ list P̂ do
2: Let r =

√
R̃2
kk + R̃2

ik, c = R̃ik
r

, s = R̃kk
r

3:

[
R̃k,j�k∈P̂
R̃i,j�k∈P̂

]
=

[
c s
−s c

][
R̃k,j�k∈P̂
R̃i,j�k∈P̂

]
4:

[
Q̃:,k Q̃:,i

]
=

[
Q̃:,k Q̃:,i

] [ c −s
s c

]
5:
6: Let coefficient b h = Q̃T bk, b l = Q̃T bi
7: Set Q̃T bk = c ∗ b h+ s ∗ b l, Q̃T bi = −s ∗ b h+ c ∗ b l
8: end for
9: Remove index i from list P̂
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We refer to [117] for precautions when computing the rotation coefficients c, r

in Algorithm 11. When updating matrices R̃ and Q̃, a row or column is fixed so the

transformation requires 2(` − i + 1) row and column memory reads and writes each.

Updating matrices Q̃ and R̃ requires 6m(m− i) and 6(`− i)+6(`− i+1)(`/2− i/2−1)

flops respectively. The asymptotic complexity isO(m2+n2). The costs for the downdates

are summarized in Table 5.1.

Algorithm Col/row ac-
cesses

Up/downQ flops Up/down R flops

MGS/up/reorder `+ 2 6m`+ 3m+ 1 included in Q
MGS/up/unorder `(` − i + 2) +

2(`− i+ 2)
(3m` + 3mi +
1)(`− i+ 2)

included in Q

Rot/up/reorder 2(m− `− 1) 6m(m− `− 1) 2m2 + 8(m− `− 1)
Rot/up/unorder 4(m− `− 1) 6m(m− i) 2m2 +8(m− i)+ 6(`− i+

1)(`/2− i/2− 1)
CSNE/up/reorder 3m+ 2`+ 1 NA 6m2 + 4m+ 1 + 3`2 + 3`
CSNE/up/unorder 3m+4`−2i+1 NA 6m2+4m+1+3`2+6(`−

i+1)(`/2−i/2−1)+6`−3i
Rot/down/NA 4(`− i+ 1) 6m(m− i) 6(`− i)+6(`− i+1)(`/2−

i/2− 1)

Table 5.1: Costs for QR updating/downdating methods with respect to the reordering
strategy. The rotation and CSNE methods have flops of order m2. For overdetermined
and square systems where ` ≤ n ≤ m, this quantity is minimized for the modified Gram-
Schmidt method.

5.4 Multi-core CPU Architectures

The multi-core trend began as a response to the slowdown of Moore’s Law while man-

ufactures approached the limitations in single-core clock speeds. With additional cores

added on chip, individual CPU threads can be assigned and processed by their own units

in hardware. Thus, a single problem is decomposed and solved by several threads without

over-utilizing a single core. This gave multi-threading an edge over traditional single-core

processors as data and instruction level caches could be dedicated to a smaller sub-set of
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operations.

Such Multiple-Instruction-Multiple-Data (MIMD) architectures support task-level

parallelism where each core can asynchronously execute separate threads on separate data

regions. The individual cores are often super-scalar and thus capable of processing out-of-

order instructions in their pipeline. This allows multi-core architectures to simulate data-

level parallelism from Single-Instruction-Multiple-Data (SIMD) like architectures such

as the GPU with added proficiency. Furthermore, multi-core architectures have access to

a common pool of main memory off-die and capable of multi-level caching per core and

per processor on-die. For both data and task-level parallelism, this allows memory to be

decomposed and cached on a per-core basis for efficient reuse.

Several application programming interfaces (APIs) and libraries take advantage of

these shared memory multiprocessing environments for high performance computing.

Open Message Passing (OpenMP) is an API based on fork-join operations where the

program enters into a designated parallel region [60]. Each thread exhibits both task and

data-level parallelism as it independently executes code within a same parallel region.

The Intel Math Kernel Library (MKL) is a set of optimized math routines with calls to

Basic Linear Algebra Sub-programs (BLAS) and Linear Algebra PACKage (LAPACK) li-

braries [118]. Many of its fundamental matrix and vector routines are blocked and solved

across multiple threads.
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5.4.1 CPU Implementation

To exploit the advantages of multi-threading, we adopt both the OpenMP API and the

Intel MKL in the CPU implementation. One way to map each linear system to a thread

is to declare the entire NNLS algorithm within a parallel OpenMP region. That is, a

specified fraction of threads execute NNLS on a mutually exclusive set of linear system of

equations. The remaining threads are dedicated to the MKL library in order to accelerate

common matrix-vector and vector-vector operations used to solve the unconstrained least

squares sub-problem.

5.5 GPU Architectures

Recent advances in general purpose graphics processing units (GPUs) have given rise to

highly programmable architectures designed with parallel applications in mind. More-

over, GPUs are considered to be typical of future generations of highly parallel, multi-

threaded, multi-core processors with tremendous computational horsepower. They are

well-suited for algorithms that map to a Single-Instruction-Multiple-Thread (SIMT) ar-

chitecture. Hence, GPUs achieve a high arithmetic intensity (ratio of arithmetic operation

to memory operations) when performing the same operations across multiple threads on

a multi-processor.

GPUs are often designed as a set of multiprocessors, each containing a smaller set

of scalar-processors (SP) with a Single-Instruction-Multiple-Data (SIMD) architecture.

Hardware multi-threading under a SIMT architecture maps multiple threads to a single

SP. A single SP handles the instruction address and register states of multiple threads so
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that they may execute independently. The multiprocessor’s SIMT unit schedules batches

of threads to execute a common instruction. If threads of the same batch diverge via a

data-dependent conditional branch, then all the threads along the separate branches are

serialized until they converge back to the same execution path.

Figure 5.1: GPU multiprocessor utilizes hierarchical memory model spanning fast on-
chip and shared memory accessible by the local multiprocessor to slow off-ship global
memory accessible by all multiprocessors.

GPUs have a hierarchical memory model with significantly different access times

to each level. At the top, all multiprocessors may access a global memory pool on the

device. This is the common space where input data is generally copied and stored from

main memory by the host. It is also the slowest memory to access as a single query from

a multi-processor has a 400 to 600 clock cycles latency on a cache-miss. See [61] for a

discussion on coalesced global memory accesses which reads or writes to a continuous

chunk of memory at a cost of one query and implicit caching on the Fermi architecture.
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On the same level, texture memory is also located on the device but can only be written to

from hosts. However, it is faster than global memory when access patterns are spatially

local. On the next level, SPs on the same multi-processor have access to a fast shared

memory space. This enables explicit inter-thread communication and temporary storage

for frequently accessed data. Constant memory, located on each multi-processor, are

cached and optimized for broadcasting to multiple threads. On the lowest level, a SP has

its own private set of registers distributed amongst its assigned threads. The latency for

accessing both shared and per-processor registers normally adds zero extra clock cycles

to the instruction time. See Figure 5.1 for a visualization.

Programming models such as NVIDIA’s Compute Unified Device Architecture

(CUDA) [61] and OpenCL [119] organize threads into thread-blocks, which in turn are

arranged in a 2D grid. A thread-block refers to a 1D or 2D patch of threads that are exe-

cuted on a single multiprocessor. These threads efficiently synchronize their instructions

and pass data via shared memory. Instructions are generally executed in parallel until a

conditional branch or an explicit synchronization barrier is declared. The synchronization

barrier ensures that the thread-block waits for all its threads to complete its last instruc-

tion. Thus, two levels of data parallelism are achieved. The threads belonging to the same

thread-block execute in lock-step as they process a set of data. Individual thread-blocks

execute asynchronously but generally with the same set of instructions on a different set

of data.

While efficient algorithms on sequential processors must reduce the number of

computations and cache-misses, parallel algorithms on GPUs are more concerned with

minimizing data dependencies and optimizing accesses to the memory hierarchy. Data
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dependency increases the number of barrier synchronizations amongst threads and is of-

ten subject to the choice of the algorithm. Memory access patterns present a difficult

bottleneck on multiple levels. While latency is the first concern for smaller problems, we

run into a larger issue with memory availability as the problem size grows. That is, the

shared memory and register availability are hard limits that bound the size and efficiency

of thread-blocks. A register memory bound per SP limits the number of threads assigned

to each SP and so decreases the maximum number of threads and thread-blocks running

per multi-processor. A shared memory bound per multi-processor limits the number of

thread-blocks assigned to a multi-processor and so decreases the total number of threads

processed per multi-processor.

5.5.1 GPU Implementation

One way to map each linear system onto a GPU is to consider every thread-block as an

independent vector processor. Each thread-block of size m× 1 maps to the elements in a

column vector and asynchronously solves for a mutually exclusive set of linear systems.

The number of thread-blocks that fit onto a single multi-processor depends on the column

size m or the number of equations in the linear system. This poses a restriction on the

size of linear systems that our GPU implementation can solve as the maximum size m is

constrained to a fraction of the amount of shared memory available per multi-processor.

Fortunately, this is not an issue for applications where m is small (500-1000) and the

number of linear systems to be solved is large. However for arbitrarily sized linear sys-

tems of equations, our GPU implementation is not generalizable. We note that this is not

146



an algorithmic constraint but rather a design choice for our application. Our multi-core

CPU implementation of the same algorithm can solve for arbitrarily sized linear systems.

We discussion the details of the GPU implementation in sections 5.5.2-5.5.3.

5.5.2 Parallelizing QR Methods

Full QR decompositions on the GPU via blocked MGS, Givens rotations, and House-

holder reflections are implemented in [120], [121]. While [121] cites that the blocked

MGS and Givens rotation methods are ill-suited for large systems on GPUs as they suffer

from instability and synchronization overhead, we are interested in only the QR updating

and downdating schemes for a large number of small systems. We show that it is possi-

ble for m threaded multi-processors to efficiently perform the MGS updating and Givens

rotation downdating steps.

For the MGS update step, most of the operations are formulated as vector inner

products, scalar-vector products, and vector-vector summations. These operations lead to

an one-to-one mapping between the m×1 column vector coordinates and the m threaded

thread-block. Such operations are computable via parallel reduction techniques from

[122]. In algorithm 10, we parallelize all four inner products (lines 3, 4, 6, 8) in logm

parallel time each. The inner loop iterates for ` or at most n times. Thus, we obtain an

order reduction in parallel time-complexity to O(n logm).

For the Givens rotation downdate step, we obtain an one-to-many mapping between

the n×1 row vector elements and them threads in a thread-block for matrixR. We obtain

an one-to-one mapping for the m × 1 column vector elements in matrix Q. Computing
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vector QT b follows a similar relation. For obtaining the rotation coefficients c, s, a single

thread computes and broadcasts to the rest of the thread-block. In Algorithm 11, the inner

loop (lines 3-4) updates both matrices R̃ and Q̃ in parallel O(1) time. Writing row and

column data and updating vector Q̃T b (line 7) are thread-independent and computable in

O(1) parallel time. Thus, we obtain an order reduction in parallel time-complexity to

O(n).

Parallel reductions are often performed on the GPU in place of common vector-

vector operations using prefix sum discussed in [123]. Algorithm 12 sums 512 elements

in 9 parallel flops, 5 thread-synchronizations, and 18 parallel shared memory accesses.

Each of the 512 threads reserves a memory slot in shared memory. The unique thread ID

or tID denotes the corresponding data index in the shared memory array. At each step,

half the threads from the previous step sum up the data entries stored in the other half of

shared memory. The process continues until index 0 in the shared memory array contains

the total summation.

5.5.3 Memory Usage

To take advantage of different access times on the GPU memory hierarchy, the input and

intermediate data can be stored and accessed on different levels for efficient reuse. Local

intermediate vectors can either be stored in shared memory or alternatively in dedicated

registers spanning all threads in a thread-block. List P̂ is stored in shared memory as

multiple threads require synchronization to update and downdate the same column. The

right-hand-side vector Q̂T b is stored in registers since no thread accesses elements outside
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Algorithm 12 CUDA parallel floating-point summation routine [123]
__device__ float reduce512( float smem512[], unsigned short tID){

__syncthreads();
if(tID < 256) smem512[tID] += smem512[tID + 256];
__syncthreads();
if(tID < 128) smem512[tID] += smem512[tID + 128];
__syncthreads();
if(tID < 64) smem512[tID] += smem512[tID + 64];
__syncthreads();
if(tID < 32){

smem512[tID] += smem512[tID + 32];
smem512[tID] += smem512[tID + 16];
smem512[tID] += smem512[tID + 8];
smem512[tID] += smem512[tID + 4];
smem512[tID] += smem512[tID + 2];
smem512[tID] += smem512[tID + 1];

}
__syncthreads();
return smem512[0];

}

its one-to-one mapping in the update and downdate steps.

Global memory accesses on the GPU are unavoidable for updating large matrices Q̂

and R̂. We store matrix Q̂T so that column vector accesses are coalesced in row-oriented

programming models and matrix R̂ as the Given rotations update the rows. Matrices Q̂

and R̂ are stored in-place unlike the compact format in Eqs. 5.4, (5.6). We allocate m×n

blocks of global memory and use the reordered list P̂ to associate column and row indices

for the update and downdate steps. This is to avoid any physical shifts of column vectors

in global memory. Rather, we parallel shift the list P̂ when a variable is removed from

the passive-set.

The MGS update step reads ` number of columns in matrix Q̂ from global memory

into registers. Computing inner products and vector norms during the projections requires
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an intermediate shared memory vector for the parallel reduction function. The new col-

umn for matrix R̂ is locally stored in registers before updated to global memory. A single

element for vector Q̂T b is updated and written to shared memory. The total number of

parallel shared memory accesses is 39`+ 2. The total number of parallel global memory

accesses is `+ 2.

The Givens rotations downdate step accesses two columns of matrix Q̃ and two

rows of matrix R̃ for each of the `− i transformation. Since row i of matrix R̃ and column

i of matrix Q̃ are fixed across transformations, they are stored and updated in shared

memory. The other row and column are directly updated in global memory. Updating

vector Q̂T b requires two shared memory reads and writes. The total number of parallel

shared memory accesses is 2(` − i) + 2. The total number of parallel global memory

accesses is 2(`− i+ 1).

5.6 Applications for Deconvolution and Time-Delay Estimation

In remote sensing, a discrete-time deconvolution recovers a signal x that has been con-

volved with a transfer function s. The known signal s is often convolved with an unknown

signal x that satisfies properties such as non-negativity. The deconvolution problem can

modeled as

y(t) = s(t)x(t) =

∫ ∞
−∞

s(τ)x(t− τ) dτ =

∫ ∞
−∞

x(τ)s(t− τ) dτ ≈
n∑
τ=1

x(τ)s(t− τ) dτ,

(5.8)
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where t is the sample’s time, y(t) the observed signal, and n the number of samples over

time. To solve for the unknown signal x, we rewrite Eq. 5.8 as the following square linear

system of equations Ax = b, where A is a Toeplitz matrix:

A =



s(0) s(−1) · · · s(−(n− 1))

s(1) s(0) · · · s(−(n− 2))

...
... . . . ...

s(n− 1) s(n− 2) · · · s(0)


, x =


x(1)

...

x(n)

 , b =


y(1)

...

y(n)

 .

(5.9)

Efficient algorithms for the deconvolution problem, which either exploit the simple struc-

ture of the convolution in Fourier space, or which exploit the Toeplitz structure of the

matrix, are available in [124], [125]. However, if signal x is known to be non-negative

and the data y(t) is corrupted by noise, then we may treat the deconvolution as a NNLS

problem.

A similar problem arises in time-delay estimation between a common audio source

signal recorded at different points in space. Knowledge of multiple time-delay estima-

tions can be used to localize sound in a spherical domain. In the case of human sound

localization, the inter-aural time difference (ITD) between left-right ear sound measure-

ments sl, sr can be formulated as the following overdetermined Toeplitz system of linear
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equations:

A =



sr(0) 0 · · · 0

... . . . . . . ...

sr(n− 1) · · · · · · ...

0
. . . . . . ...

... . . . . . . 0

... . . . . . . sr(0)

... . . . . . . ...

0 . . . 0 sr(n− 1)



, x =


x(1)

...

x(2n)

 , b =



0

...

0

sl(0)

...

sl(n− 1)

0

...

0



,

(5.10)

where matrixA ∈ R3n×2n is the first 2n columns of a Toeplitz matrix with leading column

[sr(0), . . . , sr(n − 1), 0 . . . 0]T ∈ R3n×1 and zero-row vectors; samples of signal sr are

shifted w.r.t. the column index and zero padded. Vector b is the signal sl nested between

zero-column vectors of size n. Thus, solution vector x is the set of non-negative weights

for the linear combination of time-delayed signals sr that best reconstructions signal sr in

the least squares sense.

5.7 Experiments

As a baseline, we note that Matlab’s lsqnonneg function implements the same active-set

algorithm but with a full QR decomposition for the least squares sub-problem. Matlab
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2009b and later versions use Intel’s Math Kernel Library (MKL) with multi-threading to

resolve the least squares sub-problems. For a better comparison, we first port the lsqnon-

neg function into native C-code with calls to multi-threaded MKL BLAS and LAPACK

functions. The results from this implementation (CPU lsqnonneg) show a 1.5-3x speed-up

over the Matlab lsqnonneg function in our experiments. Next, we apply our updating and

downdating strategies with column reordering using MKL BLAS functions to the CPU

version. The results from this second implementation (CPU NNLS) show a 1-3x speed-

up that depends on the number of column updates and downdates. Last, we compare the

lsqnonneg variants to alternative NNLS algorithms from literature.

To compare GPU implementation with the multi-threaded CPU variants, we begin

timing the point of entry and exit out of the GPU kernel function. Memory transfer and

pre-processing times in the case of non-synthetic data are omitted. Both the GPU and

CPU variants also obtain identical solutions subject to rounding error within the same

number of iterations for all data sets. We find that for a fewer number of linear systems,

the CPU implementations outperforms the GPU as only a fraction of the GPU cores are

utilized. When the number of linear systems surpasses the number of multi-processors,

the GPU scales better on an order of 1-3x than our fastest CPU implementation.

For reference, we use a Dual Quad-Core Intel(R) Xeon(R) X5560 CPU @ 2.80GHz

(8 cores) for testing our CPU implementations. The CPU codes compiled under both

Intel icc 11.1, gcc 4.5.1, and linked to MKL 10.1.2.024 yield similar results for 8 run-

time threads. The codes tested between Matlab 2010b and 2009b also yield comparable

results. Mixing the number of threads assigned between OpenMP and MKL did not have

a large impact on our system. We use a NVIDIA Tesla C2050 (448 cores across 14
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multi-processors) and codes compiled under CUDA 3.2 for the GPU implementation and

testing.

5.7.1 Synthetic Deconvolution

For the first set of synthetic data, we generate mean shifted 1-D Gaussians with σ =

4.32 to store as columns in matrix A of size m = n = 512. In this Gaussian fitting

problem, each system uses the same matrix A but with non-negative random vectors b.

The choice of the σ parameter ensures that the mean shifted Gaussians are not too wide

as to allow early convergence and not too narrow as to locally affect only a few variables.

Furthermore, matrix A is now considered dense and vectors b no longer reflect real-world

values. We expect the average number of iterations or column updates and downdates to

exceed that of the real-world data cases.

The total speed-up of GPU NNLS over the CPU variants are more pronounced (3x

compared to CPU NNLS, 23x compared to CPU lsqnonneg). The larger ratio of column

downdate to update steps suggests that our reordering strategy and fast Givens rotation

method in the downdating step outperforms the lsqnonneg variants.

For the second set of synthetic data, we generate both random matrices A of size

m = n = 512 and non-negative random vectors b. The number of column updates and

downdates is less than that of the two previous experiments. Furthermore, the total num-

ber of column updates dominates the number of column downdates. The results between

GPU and CPU NNLS show that both implementations have similar run-time scaling as

the number of systems increases. This suggests that the most of the performance gains in
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Number of systems 1 24 48 96 192
Number of updates 165 3907 7792 15541 30966
Number of downdates 92 2109 4196 8362 16599

GPU NNLS 0.4257 0.5094 0.9546 1.7862 3.2672
CPU NNLS 0.0654 1.2238 2.4141 4.8067 9.6250
CPU lsqnonneg 0.4791 8.7611 17.2483 34.5396 69.4889
Matlab lsqnonneg 0.9437 19.5904 38.6469 77.1072 155.7700
Matlab FNNLS [108] 0.4937 11.7176 23.9502 47.4635 91.4500
Matlab interior-points [114] 1.6317 40.7017 83.9788 164.4839 328.9569
Matlab PQN-NNLS [110] 3.1106 128.6616 253.3796 504.3153 989.2051

Table 5.2: Runtime (seconds) comparisons of NNLS and lsqnonneg variants on multiple
systems of mean shifted Gaussian matrix A and random vectors b.

prior experiments are from the GPU downdating steps. The results between CPU NNLS

and CPU lsqnonneg leads to a similar conclusion as the performance gain (1.7x) is mini-

mum compared to the prior two experiments.

Number of systems 1 24 48 96 192
Number of updates 52 1169 2361 4766 9525
Number of downdates 0 13 28 58 124

GPU NNLS 0.1194 0.1397 0.2526 0.4875 0.8667
CPU NNLS 0.0068 0.1157 0.2245 0.4352 0.8794
CPU lsqnonneg 0.0223 0.4665 0.8959 1.7269 3.5243
Matlab lsqnonneg 0.0330 0.8096 1.5583 3.0097 6.1627
Matlab FNNLS [108] 0.0248 0.5902 1.1602 2.2920 4.6022
Matlab interior-points [114] 0.4480 10.7729 21.1767 41.9441 83.6695
Matlab PQN-NNLS [110] 1.5935 55.8196 110.0892 221.7277 441.7190

Table 5.3: Runtime (seconds) comparisons of NNLS and lsqnonneg variants on multiple
systems of random matrices A and random vectors b.

5.7.2 Non-Synthetic Deconvolution

For real-world data, we use terrain laser imaging sets obtained from the NASA Laser

Vegetation Imaging Sensor (LVIS)1. Each data set contains multiple 1-D Gaussian-like
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signals s and observations of total return energy b of size m = n = 432. In this decon-

volution problem, the transfer functions s represent the single impulse energy fired over

time on ground terrain and the observed signals b produces a waveform that indicate the

reflected energy over time. The signals s are generally 15-25 samples wide so the com-

puted matrices A are Toeplitz banded and sparse. NNLS solves for corresponding pairs

of matrix A and vector b to obtain the sparse non-negative solutions x that represent the

times of arrival for a series of a fired impulses. This estimates the ranges or distances to a

surface target.

For comparing the NNLS methods, we record the run-times in relation to the num-

ber of column updates and downdates for the least squares sub-problem. The results

from CPU NNLS show a 11x speed-up over the GPU implementation when solving for

a single system. This is due to the underutilization of cores in all but the multi-processor

currently assigned to the linear system of interest. For a larger number of systems, the

GPU results show a 1-2x speed-up over CPU NNLS due in part to the larger number of

processing units suited for vector operations in the algorithm. The results between CPU

NNLS and CPU lsqnonneg show the performance gains from fewer flops and memory

accesses attained by the column reordering, updating, and downdating strategies.

5.7.3 Interaural Time Difference Estimation

For time-delay estimation, the publicly available CIPIC Head Related Transfer Function

(HRTF) [1] consists of a collection of acoustic time-series measurements by microphones

in various subject’s left and right ears in response to direction-specific sound waves. The

1https://lvis.gsfc.nasa.gov/index.php
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Number of systems 1 24 48 96 192
Number of updates 108 1477 2806 5695 12067
Number of downdates 14 220 406 834 1839

GPU NNLS 0.2172 0.2238 0.2356 0.4508 0.7203
CPU NNLS 0.0186 0.1636 0.2990 0.5989 1.2489
CPU lsqnonneg 0.0770 0.7163 1.2908 2.6225 5.5460
Matlab lsqnonneg 0.1342 1.1236 2.0152 4.1268 8.7176
Matlab FNNLS [108] 0.0493 0.5936 1.1135 2.2639 4.6148
Matlab interior-points [114] 8.3642 135.7896 261.3665 528.4468 1082.8714
Matlab PQN-NNLS [110] 1.4161 138.2953 217.6929 479.9867 862.9674

Table 5.4: Runtime (seconds) comparisons of NNLS and lsqnonneg variants for signal
deconvolution. Signal and observation data taken from LVIS Sierra Nevada, USA (Cali-
fornia, New Mexico), 2008.

time-series represents the scattering patterns of the sound source’s acoustic wave off of

the listener’s anatomic features (torso, head, and outer ears) before reaching the eardrum.

The frequency response of how sound is modified in phase and magnitude by such scat-

tering is called the HRTF [7] and the time-series representation is called the head-related

impulse response (HRIR). While analysis of the frequency representation is important for

elevation cues, the left-right ITDs from the HRIR representation plays a more direct role

to sound localization, especially along the azimuth (θ = π/2) plane.

A CIPIC HRIR measurement consists of 100 samples over a 4.5 ms time-interval.

Left-right ITDs for test subject 3 on the azimuth plane are shown Figure. 5.2. The NNLS

time-delay formulation in Eq. 5.10, which can expressed by the convolution model in Eq.

5.9 by replacing functions s and x with sr and sl respectively, is compared to standard

cross-correlation; the NNLS solution has a sparse representation that relates the left-ear

HRIR to a non-negative linear combination of time-delayed right-ear HRIR. While cross-

correlation may be used for time-delay estimation in microphone arrays whose minimum
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group delay signals are identical, the left and right HRIR signals are sufficiently different

due to sound scattering off of anthropometry. The NNLS time-delay formulation is also

more interpretable than an unconstrained variant as the former solution is sparse and can

be normalized to give a time-delay likelihood estimate.

The maximum valued ITDs are reported for each direction on the azimuth plane,

exhibiting near 0 delay along directions close to the median (φ = 0 and φ = π) plane and

the greatest differences along the orthogonal directions. The 2-norm reconstruction error

||Ax − b|| is larger for source directions opposite the right ear, possibly due to a lower

signal-to-noise ratio.
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Figure 5.2: ITD of left and right ear CIPIC HRIRs on the Azimuth plane for subject 3 are
shown. The x-axis represents integer time-bins.

We also compare the NNLS solutions to that of unconstrained least squares, the

cross-correlation, the time difference in maximum peak (15% energy) delays, and the
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Figure 5.3: Horizontal plane ITD errors, computed over various methods (max-peak,
cross-correlation, least squares, and NNLS), w.r.t. the Woodworth model [2] (ITD =
a(φ + sinφ)/c for the sphere radius a anthropometric parameter X2/2, sound speed c,
and azimuth φ in radians) are shown.

theoretical Woodworth model for ITD on a rigid sphere [2]. NNLS enjoys several ad-

vantages: The solution is naturally sparse and optimal in the least-squares sense. The

non-negative solution vector can be normalized to give a time-delay likelihood estimate.

The largest weight in the solution encodes the maximum time-delay (treated as ITD) and

is more distinct than cross-correlation (see Fig. 5.4). For a broader comparison, Fig. 5.3

compares the ITDs, for all horizontal plane directions, that are extracted using the listed

methods. The maximum peak method in the unconstrained solution to Eq. 5.10 did not

produce accurate ITDs compared to the NNLS solution when relating an IID attenuated

right-HRIR sr to the left-HRIR sl on the negative azimuth side; it underestimates the

time-delay along directions co-linear with the ears.
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5.8 Conclusions

In this paper, we have presented an efficient procedure for solving least squares sub-

problems in the active-set algorithm. We have shown that prior QR decompositions may

be used to update and solve similar least squares sub-problems. Furthermore, a reorder-

ing of variables in the passive-set yielded fewer computations in the update step. This

has lead to substantial speed-ups over existing methods in both the GPU and CPU im-

plementations. Applications to satellite based terrain mapping, microphone array signal

processing, and time-delay estimation for human sound localization are being worked

on. Both GPU and CPU source codes are available on-line at http://www.cs.umd.

edu/˜yluo1/Projects/NNLS.html.
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Figure 5.4: Cross-correlation and NNLS solutions for HRIR pairs on the azimuth plane
(negative, zero, and positive time-delays centered at 100 time-samples) are shown.
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Chapter 6: Sparse Head-Related Impulse Response for Efficient Direct

Convolution

6.1 Introduction

The human sound localization ability is rooted in subconscious processing of spectral

acoustic cues that arise due to sound scattering off the listener’s own anatomy. Such

scattering is quantified by a linear, time-invariant, direction-dependent filter known as the

Head-Related Transfer Function (HRTF) [12]. HRTF knowledge allows presentation of

realistic virtual audio sources in a Virtual Auditory Display (VAD) system so that the

listener perceives the sound source as external to him/her and positioned at a specific

location in space, even though the sound is actually delivered via headphones. A number

of additional effects such as environmental modeling and motion tracking are commonly

incorporated in VAD for realistic experience [13, 24].

The HRTF is typically measured by a placing a small microphone in an individual’s

ear canal and making a recording of a broadband test signal1 emitted from a loudspeaker

positioned sequentially at a number of points in space. The HRTF is the ratio of the spec-

tra of microphone recording at the eardrum and at the head’s center position in the absence

1Various test signals, such as impulse, white noise, ML sequence, Golay code, frequency sweep, or any
broadband signal with sufficient energy in the frequencies of interest can be used for the measurements.
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of the individual. Thus, the HRTF is independent of the test signal and the recording envi-

ronment and describes the acoustic characteristics of the subject’s anthropometry (head,

torso, outer ears, and ear canal). The inverse Fourier transform of HRTF is the (time

domain) filter’s impulse response, called the Head-Related Impulse Response (HRIR).

The primary goal of the current work is to find a short and sparse HRIR represen-

tation so as to allow for computationally efficient, low latency time-domain convolution

between arbitrary (long) source signal y and short HRIR x [126, 127]. It is expected that

direct convolution2 with short and sparse x would be more efficient w.r.t. latency and cost

than frequency-domain convolution using the fast Fourier transform (FFT)3 [44, 128].

Somewhat similar approaches has been explored in the literature previously. In

the frequency domain, the HRTF has been decomposed into a product of a common

transfer function (CTF) and a directional transfer function (DTF) [24, 36, 129], where

the CTF is the minimum-phase filter with magnitude equal to average HRTF magnitude

and the DTF is a residual. A more recent work on Pinna-Related Transfer Function

(PRTF) [99, 130–132] provided successful PRTF synthesis model based on deconvolu-

tion of the overall response into ear-resonance (derived from the spectral envelope) and

ear-reflection (derived from estimated spectral notches) parts. The novelty of the cur-

rent work is that the time-domain modeling is considered and constraints are placed on

”residual impulse response” (the time-domain analog of the DTF) to allow for fast and

efficient real-time signal processing in time domain. Further, the tools to achieve this de-

composition (semi-non-negative matrix factorization with Toeplitz constraints) are novel

2(x ∗ y)i =
∑

j xjyi−j+1 for x and y zero-padded as appropriate
3Fourier Transform convolution x∗y = F−1 {F {x} ◦ F {y}} for Fourier transform operator F {} and

element-wise product ◦.

163



as well.

6.2 Problem Formulation

We propose the following time-domain representation of an HRIR x ∈ RM given by

x ≈ f ∗ g, g ≥ 0, (6.1)

where ∗ is the linear convolution operation, f ∈ RM−K+1 is a “common impulse re-

sponse” derived from the subject’s HRIR set, and g ∈ RK is a sparse non-negative “resid-

ual”; the length of g is K. In analogy with terms commonly used in PRTF research,

hereafter f is called the “resonance filter” and g the “reflection filter”. The resonance fil-

ter is postulated to be independent of measurement direction (but of course is different for

different subjects), and the directional variability is represented in g, which is proposed to

represent instantaneous reflections of the source acoustic wave off the listener’s anatomy;

hence, g is non-negative and sparse. The computational advantage of such a representa-

tion is the ability to perform efficient convolution with an arbitrary source signal y via the

associative and commutative properties of the convolution operation given by

y ∗ x = (y ∗ f) ∗ g = (y ∗ g) ∗ f. (6.2)

If y is known in advance, the convolution with f is direction-independent and can be

precomputed in advance. Thereafter, direct time-domain convolution with a short and

sparse g is fast and can be performed in real time. Moreover, even in the case of streaming
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y, computational savings are possible if the output signal has to be computed for more

than one direction (as it is normally the case in VAD for trajectory interpolation).

To learn the filters f and g, we propose a novel extension of the semi-non-negative

matrix factorization (semi-NMF) method [49]. Semi-NMF factorizes a mixed-signed ma-

trix X ≈ FGT ∈ RM×N into a product of a mixed-signed matrix F and a non-negative

matrix G minimizing the approximation error in the least-squares sense. We modify the

algorithm so that the matrix F has Toeplitz structure; then, FGT is nothing but a con-

volution operation with multiple, time-shifted copies of f placed in columns of F (see

Fig. 6.1). Thus, the overall approach for computing f and g is as follows: a) form matrix

X from individual HRIRs, placing them as columns; b) run Toeplitz-constrained semi-

NMF on X; c) take the first column and row of F as f ; and d) for each direction, obtain

non-negative g by taking a corresponding row of G.

The paper is organized as follows. In section 6.3, the modified semi-NMF algorithm

is derived, with further extension to enforce a sparseness constraint on G by formulating

it as a regularized L1 norm non-negative least squares problem (L1-NNLS) [59]. As the

cost of time-domain convolution is proportional to the number of non-zero (NZ) elements

in g, decreasing K (i.e., increasing sparsity) reduces computational load at the cost of

increased approximation error. Experimental results are presented in section 6.4 along

with the discussion. Finally, section 6.6 concludes the paper.
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Figure 6.1: Modified semi-non-negative matrix factorization generalizes time-domain
convolution for a collection of HRTFs X , resonance filter f , and non-negative reflection
filters in G.

6.3 Semi-non-negative Toeplitz Matrix Factorization

6.3.1 Background

The original non-negative matrix factorization (NMF) [133] was introduced in the statis-

tics and machine learning literature as a way to analyze a collection of non-negative inputs

X in terms of non-negative matrices F and G where X ≈ FGT . The non-negativity con-

straints have been used to apply the factorization to derive novel algorithms for spectral

clustering of multimedia data [134]. Semi-NMF [49] is a relaxation of the original NMF

where the input matrix X and filter matrix F have mixed sign whereas the elements of G

are constrained to be non-negative. Formally, the input matrix X ∈ RM×N is factorized

into matrix F ∈ RM×K and matrix G ∈ RN×K by minimizing the residual Frobenius
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norm cost function

min
F,G

∥∥X − FGT
∥∥2

F
= tr

(
(X − FGT )T (X − FGT )

)
, (6.3)

where tr () is the trace operator. For N samples in the data matrix X , the ith sample is

given by the M -dimensional row vector Xi = X:,i and is expressed as the matrix-vector

product of F and theK-dimensional row vectorGi = Gi,:. The number of componentsK

is selected beforehand or found via data exploration and is typically much smaller than the

input dimension M . The matrices F and G are jointly trained using an iterative updating

algorithm [49] that initializes a randomized G and performs an iterative loop computing

F ← XG(GTG)−1,

Gij ← Gij

√
(XTF )+

ij + [G(F TF )−]ij

(XTF )−ij + [G(F TF )+]ij
,

(Q)+
ij =

|Qij|+Qij

2
, (Q)−ij =

|Qij| −Qij

2
.

(6.4)

The positive definite matrix GTG ∈ RK×K in Eq. 6.4 is small (fast to compute) and the

entry-wise multiplicative updates for G ensure that it stays non-negative. The method

converges to the optimal solution that satisfies Karush-Kuhn-Tucker conditions [49] as

the update to G monotonically decrease the residual in the cost function in Eq. 6.3 for a

fixed F , and the update to F gives the optimal solution for the same cost function for a

fixed G.
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6.3.2 Notational Conventions

To modify semi-NMF for learning the direction-independent f and a set of direction-

dependent g, we introduce the following notation. Assume that F̃ is a Toeplitz-structured

matrix and F̃ij = Θi−j for parameters Θ = [Θ1−M , . . . ,ΘK−1]T ; thus, all entries along

diagonals and sub-diagonals of F̃ are constant. Hence, the Toeplitz structure is given by

Top (Θ) =



Θ0 Θ1 . . . ΘK−2 ΘK−1

Θ−1 Θ0 Θ1 . . . ΘK−2

... . . . . . . . . . ...

Θ2−M . . . Θ−1 Θ0 Θ1

Θ1−M Θ2−M . . . Θ−1 Θ0


, (6.5)

and is fully specified by parameters {Θ0, . . . ,ΘK−1} and {Θ0, . . . ,Θ1−M} along the first

row and column. The Toeplitz matrix can also be represented indirectly as a linear com-

bination of the parameters weighted by shift matrices Sk ∈ RM×K as

F̃ =
K−1∑

k=1−M

SkΘk, Skij = δi,j−k. (6.6)

An arbitrary matrix F can be approximated by its nearest Toeplitz matrix F̃ , which

is defined as the minimizer of the residual Frobenius norm cost function given by

J =
∥∥∥F − F̃∥∥∥2

F
= tr

(
F TF − 2F T F̃ + F̃ T F̄

)
,

∂J

∂Θk

= 2tr

(
(F − F̃ )T

∂F̃

∂Θk

)
,

∂F̃

∂Θk

= Sk,

(6.7)
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where the partial derivatives of J w.r.t. Θk are linearly independent due to the trace term.

By equating the derivatives to zero, the solution Θ is given by

Θk =
tr
(
F TSk

)
min(k +M,K − k,K,M)

. (6.8)

Hence, a Toeplitz approximation F̃ to an arbitrary matrix F is obtained simply by taking

the means of the subdiagonals of F .

6.3.3 Toeplitz-Constrained Semi-NMF

Assuming that a solution of the factorization problem F has in fact Toeplitz structure as

per Eq. 6.6; the cost function in Eq. 6.3 is quadratic (convex) w.r.t. each Θk and the set

of parameters Θ has a unique minimizer. The partial derivatives of the cost function4 are

given by

∂
∥∥∥X − F̃GT

∥∥∥2

F

∂Θk

=
∂tr
(

(X − F̃GT )T (X − F̃GT )
)

∂Θk

= 2tr

((
GTG

M−1∑
i=1−K

Sk
T

SiΘi

)
− SkTXG

)
,

(6.9)

where the product of shift matrices SkTSi can be expressed as the square shift matrix

S̄i−k = Sk
T
Si. To solve for the set of parameters Θ, one needs to set the partial derivatives

to zero, which yields a linear equation AΘ = b where A ∈ R|Θ|×|Θ|, |Θ| = M +K − 1 is

4Unlike the case considered in section 6.3.2, the partial derivatives in Eq. 6.9 are linearly dependent.
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a Toeplitz square matrix, and b ∈ RM×1 is a vector specified as

AM+k,M+i = tr
(
GTGS̄i−k

)
, bM+k = tr

(
Sk

T

XG
)
. (6.10)

For positive-definite A, the matrix F̃ is given by the linear equation solution:

F̃ = Top (Θ) , Θ = A−1b, (6.11)

which is the unique minimizer of Eq. 6.3. Thus, to enforce Toeplitz structure on F , the

iterative update F ← XG(GTG)−1 in the semi-NMF algorithm (Eq. 6.4) is replaced by

computing F as prescribed by Eq. 6.10 and Eq. 6.11.
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Figure 6.2: RMSE / SD error progress over 25 algorithm iterations.

Note that to perform a convolution between f and g (i.e., to reconstruct the HRIR)

one needs to further constrain the Toeplitz matrix F̃ given in Eq. 6.5 in order to fulfill the

filter length requirements. Such convolution is equal to the constrained Toeplitz matrix-
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vector product

Xi =



Θ0 0 . . . 0

Θ−1 Θ0 0 . . .

... . . .
. . . 0

ΘK−M . . . Θ−1 Θ0

0 ΘK−M . . . Θ−1

... . . .
. . . ...

0 . . . 0 ΘK−M




Gi1

...

GiK

 , (6.12)

where the parameters {ΘK−M−1, . . . ,Θ1−M ,Θ1, . . . ,ΘK} are set to zero. Only the NZ

parameters {Θ0, . . .ΘK−M} are solved for in a smaller (M−K+1)×(M−K+1) sized

linear system as per Eq. 6.10 and Eq. 6.11. These NZ parameters form the resonance

filter f :

f = {Θ0, . . .ΘK−M} ∈ RM−K+1. (6.13)

6.3.4 Minimizing the Number of Reflections

To introduce sparsity, we restrict the number of NZ entries (NNZE) in G. In order to

do that, we fix the trained resonance filter F̃ and solve for each reflection filter g = Gi

separately in a penalized L1-NNLS problem formulation [114] given by

min
Gi

∥∥D (FGT
i −Xi

)∥∥2

2
+ λ |Gi|1 , s.t. Gi ≥ 0, (6.14)
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where D ∈ RM∗×M is some transformation of the residual5. Three transformations are

considered.

Figure 6.3: Top row: Slices of reflection filter matrix G trained without sparsity con-
straint; also, original HRIR after min-phase processing, time delay removing, and normal-
ization. Bottow row: Slices of reflection filter matrix G trained with sparsity constraint
applied (λ = 10−3); also, HRTR reconstructed from it.

1. The identity transform DI = I ∈ RM×M , which directly minimizes the residual

norm while penalizing large magnitudes in the reflection filter Gi.

2. The convolution transform

DC = Top
(
ΘC
)
∈ RM×M ,

ΘC
1:M−1 = Nσ(1 : M − 1), ΘC

0:1−M = Nσ(0 : 1−M),

(6.15)

5A free Matlab solver for L1-NNLS is available online at http://www.stanford.edu/˜boyd/
papers/l1_ls.html
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which is characterized by the Gaussian filter Nσ(x) = 1
σ
√

2π
e−

x2

2σ2 . This transform effec-

tively low-passes the reconstructed HRIR. It is equivalent6 to windowing the frequency-

domain residuals with a Gaussian filter of inverse bandwidth; hence, the low-frequency

bins are weighted heavier in the reconstruction error.

3. The window transform

DW = diag (vσ(0 : M − 1)) ∈ RM×M , (6.16)

where vσ(x) = e−
x2

σ2 is a Gaussian-like filter. The window transform has the effect of con-

volving the signal spectrum with a filter vσ(x) as if both were time series, which is equiv-

alent to windowing HRIR in time domain by the Gaussian filter of inverse bandwidth. In

this way, the earlier parts of the reconstructed HRIR contribute to the reconstruction error

to the larger extent.

The additional regularization term λ in Eq. 6.14 affects the sparsity of g as increas-

ing λ decreases the NNZE. In our practical implementation, we also discard elements that

are technically non-zero but have small (≤ 10−4 magnitude) as they contribute little to the

reconstruction. The final algorithm for learning the resonance and reflection filters with

the sparsity constraint on the latter is summarized in Algorithm 13.

6Convolution in time domain is equivalent to windowing in frequency domain, and vice versa.
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Algorithm 13 Modified Semi-NMF for Toeplitz Constraints
Require: Filter length K, transformation matrix D ∈ RM∗×M , HRIR matrix X ∈

RM×N , max-iterations T
1: G← rand(N,K) \\ Random initialization
2: for t = 1 to T do
3: Θ← A−1b \\ Solve for resonance via Eqs. 6.10, 6.11
4: F̃ ← Top (Θ) \\ Toeplitz matrix via Eqs. 6.12, 6.13
5: Update G. \\Multiplicative update via Eq. 6.4
6: end for
7: Fine-tune G. \\ Vary λ, σ in Eqs. 6.14, 6.16, 6.15
8: return F̃ , G

6.4 Experiments and Results

6.4.1 HRIR/HRTF Data Information

We have performed an extensive series of experiments on the data from the the well-

known CIPIC database [1]; however, the approach can be used with arbitrary HRTF data

[25, 26, 135, 136]. We pre-process the data as follows: a) convert HRIR to min-phase; b)

remove the initial time delay so that the onset is at time zero; and c) normalize each HRIR

so that the absolute sum over all samples is equal to unity.

As mentioned previously, our processing intends to separate the arbitrary impulse

response collection of into “resonance” (direction-independent) and “reflective” (direction-

dependent) parts. For the HRIR, we believe that these may correspond to pinna/head res-

onances and instantaneous reflections off the listener’s anthropometry, respectively. Such

an approach may also be applicable to other IR collections; for example, room impulse

responses [137] may be modeled as a convolution between a shared “resonance” filter (i.e.

long reverberation tail) and the “reflective” filter (early sound reflections off the walls).

In order to obtain a unique decomposition using Algorithm 13, one would need to have
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the number of directional IR measurements larger than the IR filter length, which may be

impractical. This topic is a subject of future research.

6.4.2 Error Metric

For evaluation, we consider two error metrics – the root-mean square error (RMSE) and

the spectral distortion (SD), representing time-domain and frequency-domain distortions

respectively:

RMSE =

√√√√∥∥∥(X − F̃GT
)∥∥∥2

F

MN
,

SD
(
H{j}, H̃{j}

)
=

√√√√ 1

M

M∑
i=1

(
20 log10

|H{j}i |
|H̃{j}i |

)2

,

(6.17)

where Xj is the reference HRIR, F̃GT
j is the reconstruction of it, H{j} = F {Xj} is

the reference HRTF, Xj is the reference HRIR, and H̃{j} = F
{
F̃GT

j

}
is the HRTF

reconstruction.

Another feasible comparison is validation of the reconstruction derived from sparse

representation (Eq. 6.14) against the naive regularized least squares (L1-LS) approxima-

tion of HRIR Xi given by

min
x̂
‖D (x̂−Xi)‖2

2 + λ |x̂|1 , (6.18)

where x̂ ∈ RM×1 (i.e. magnitude-constrained approximation without non-negativity con-

straint). The difference between SD error of L1-NNLS approximation and of L1-LS ap-
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proximation is a metric of advantage provided by our algorithm in comparison with LS

HRIR representation, which retains large-magnitude HRIR components irrespective of

their sign.

6.4.3 Resonance and Reflection Filter Training

The resonance and reflection filters f and G are jointly trained via Algorithm 13 for 50 it-

erations for N = 1250 number of samples, M = 200 time-bins, and K = 25 filter length

using left-ear data of CIPIC database subject 003. N and M here are fixed (they are

simply the parameters of the input dataset). The choice of K is somewhat arbitrary and

should be determined experimentally to obtain the best compromise between computa-

tional load and reconstruction quality. Here we set it to the average human head diameter

(≈ 19.2 cm) at the HRIR sampling frequency (44100 Hz). Visual HRIR examination

reveals that most of the signal energy is indeed concentrated in the first 25 signal taps.

Fig. 6.2 shows RMSE and SD error over 50 iterations of Algorithm 13 with no

sparsity constraint on G (i.e. λ = 0.0). The final filter f is a periodic, decaying functions

resembling a typical HRIR plot. The final matrix G is shown in the top row of Fig. 6.3.

The mean NNZE for G is 22.74 (it is less than K due to removal of all elements with

magnitude less than 10−4). As it can be seen, the SD error achieved is 3.0 dB over the

whole set of directions.

In order to obtain the sparse HRIR representation, we re-ran the algorithm using

identity transformation in L1-NNLS constraint and a fixed λ = 10−3 (this parameter

was determined empirically to cut the NNZE approximately in half). The final matrix G
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obtained in this case is shown in the bottom row of Fig. 6.3. It is sparse as expected and

has a number of non-zero bands spanning the time-direction domain; thus, only the most

salient components of G are retained. In this case, the mean NNZE is 11.48 and the SD

error is 5.3 dB over the whole set of directions. In the following section, the guidelines

for setting λ are considered.

6.4.4 Regularization Term Influence

We investigate the effects of varying the λ term in Eq. 6.14 under the identity transform

DI on the NNZE in G and on the RMSE / SD error. A sample HRIR is chosen randomly

from the data set. Fig. 6.4 shows the effect of changing λ on NNZE, RMSE, SD error, and

reconstructed HRIR/HRTF per se. The trends that one can see in the figure are consistent

with expectation; it is interesting to note that as λ increases, low-magnitude elements in

G are discarded whereas both the dominant time-domain excitations and the shape of the

spectral envelope in the reconstructed HRIR are preserved.
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Figure 6.4: Influence of the L1 regularization term λ in Eq 6.14 on NNZE and on the
reconstruction error for sample HRIR.

Further analysis of the NNZE and of the SD error over the full set of HRIR mea-

surement directions is shown in Fig. 6.5. Note that ipsilateral reflection filters have lower
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NNZE7 and achieve lower SD error. This is understandable, as they do fit better into a

“resonance-plus-reflections” model implied in this work. On the other hand, contralateral

HRIR reconstruction requires larger NNZE and results in more distortion, presumably

due to significant reflections occuring later than K = 25 time samples; note that while

some effects of head shadowing (attenuation / time delay) are removed in the prepro-

cessing step, others may not be modeled accurately; on the other hand, accurate HRIR

reproduction on contralateral side is not believed to be perceptually important [138]. Im-

provement in quality of contralateral HRIR reconstruction is a subject of future research.

One approach is to learn separate HRIR decomposition, possibly with different length of

f / g filters, for different sub-regions of space.

Figure 6.5: A map of NNZE and SD error over the full spherical coordinate range for
left-ear HRIR data. Note smaller NNZE / SD values on ipsilateral side.

Finally, in Fig. 6.6 we compare the L1-NNLS reconstruction against the naive L1-

LS reconstruction in terms of the convolution filter NNZE and SD error for varying λ and

a number of directions selected on horizontal and on medial planes. For all of these, the

difference between solutions is less than 2.0 dB SD; further, for 13 (out of 16) cases the

L1-NNLS solution has the same or better reconstruction error than naive L1-LS solution
7The variability exhibited can not be due simply to total HRIR energy differences as they were all

normalized during pre-processing.
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in highly-sparse (NNZE≤ K/2) case. This implies that our decomposition is able to find

a resonance filter and a sparse set of early reflections that represent the HRTF better than

the dominant magnitude components of the original HRIR per se.
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Figure 6.6: A comparison between varying-sparsity L1-NNLS and L1-LS solutions for
selected directions on horizontal and median planes. Angles are listed in radians.

6.4.5 Transformation Bandwidth Optimization

Further reduction of the SD error is possible via use of transform functions defined in

section 6.3.4. Application of these functions would result in different weights placed on

different aspects of reconstructed HRIR. Hence, we investigate the selection of bandwidth

term σ in Eq. 6.16 with no L1 penalty term (λ = 0) for the window transform8.

As mentioned before, application of the window transform DW causes smoothing

in the frequency domain; the amount of smoothing depends on the bandwidth term σ. Fig.
8We omit the convolution transform DC in experiments as applying a low-pass filter to the residuals

entails a per-frequency error metric.

179



Table 6.1: Mean spectral distortion for individually tuned DW,σ
H-plane M-plane All directions

σ →∞ 2.72 1.73 2.49
Tuned σ 2.53 1.57 2.24

6.7 shows the SD error dependence on σ for one sample HRIR. Obviously as bandwidth

σ → ∞, the window transform becomes the identity transform; indeed, SD error stays

constant for σ > 70. It can be seen though that the minimum SD error occurs at a finite

σ = 30 (for this particular HRIR). The parameter σ can be efficiently fine-tuned (via fast

search methods) separately for each HRIR in the subject’s HRTF set. Table 6.1 compares

the SD error obtained over the grid of σ = [15+((0 : 24)∗2), 100, 160, 250] using window

transform to the SD error with identity transform (which is the same as window transform

with σ → ∞) across horizontal / median plane and over all HRTF set directions. It can

be seen that on average, such tuning decreases the SD error by about 10%.

Figure 6.7: SD error dependence on bandwidth of window transform for a sample HRIR.
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6.4.6 Computational Cost

Consider the cost of computing the ith sample of (x ∗ y)i where ∗ is the convolution

operation. Direct time-domain convolution requires min {|x| , |y|} real floating-point op-

erations, where |x| , |y| is the NNZE in each filter. In practice, convolution is normally

done in blocks of fixed size (so-called partitioned convolution). In case of time-domain

processing, partitioned convolution incurs neither memory overhead nor latency.

At the same time, the state-of-the-art frequency-domain implementation [139] re-

quires 68
9

(|y| log2 |y| + |y|)/(|y| − |x| + 1) complex floating-point operations per output

sample. For a long input signal (e.g. |y| = 44100 – i.e. one second at CD audio quality),

time-domain algorithm is faster than frequency-domain implementation for |x| < 127.

Further, in real-time processing, latency becomes an issue, and one must use partitioned

convolution (with reasonably small block size) and the overlap-and-save algorithm [35].

In order to achieve e.g. 50 ms latency, one must have |y| = 2205. For this segment length,

direct time-domain convolution incurs less computational cost when |x| < 90. Thus, a

time-domain convolution using sparse filter x as derived in this paper is arguably quite

beneficial to the computational load incurred by the VAD engine.

6.5 Discussion

While our study presents the theoretical derivation of our factorization algorithm, a num-

ber of practical concerns have been omitted for reasons of scope. We provide a number

of remarks on these below.

First, an optimal NNZE is hardware dependent, as the crossover point between
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time-domain and frequency-domain convolution costs depends on the computational plat-

form as well as on the specific implementations of both. For example, specialized digital

signal processors can perform efficient real time-domain convolution via hardware delay

lines whereas being less optimized for handling complex floating-point operations neces-

sary for fast Fourier transform.

Second, the target reconstruction error can be adjusted to match a desired fidelity

of spatialization. For instance, early reflections off nearby environmental features may

have to be spatialized more distinctly than a number of low-magnitude later reflections

that collectively form the reverberation tail. Further, the need to individually optimize

the penalty term λ for each direction depends also on desired sparsity (i.e. computational

load) versus SD error trade-off. Such real-time load balancing is an open challenge that

depends on available computational resources on specific hardware platform.

Certain obvious extensions of the work presented has also not been fully described

for clarity. We note that using non-zero λ term and varying the bandwidth σ in DW ,

DC transforms could lead to decrease in SD error at the same NNZE when tuned. A set

of bandpass transformations that constitute the orthogonal basis for the discrete Fourier

transform could also be used, as in this case the error could be weighted individually

in each frequency band to match the listener’s characteristics (e.g. by using the equal

loudness contours in frequency).

Another consideration is the choice of the cost function in Eq. 6.3, which cur-

rently omits prior information on the HRIR measurement direction distribution. It may

be undesirable to place equal weight on all directions if those are in fact spaced non-

uniformly. Instead, the sample residual can be biased by introducing a kernel transforma-
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tion D ∈ RN×N of the HRIR measurement directions (Dij is a kernel function evaluation

between directions ith and jth) into the cost function tr
(
(X − FGT )D−1(X − FGT )T

)
,

which would decorrelate HRIR reconstruction error in densely-sampled area and thus

avoid giving preferential treatment to these areas while optimizing.

6.6 Conclusions

We have presented a modified semi-NMF matrix factorization algorithm for Toeplitz con-

strained matrices. The factorization represent each HRIR in a collection as a convolution

between a common “resonance filter” and specific “reflection filter”. The resonance filter

has mixed sign, is direction-independent, and is of length comparable to original HRIR

length. The reflection filter is non-negative, direction-dependent, short, and sparse. The

tradeoff between sparsity and approximation error can be tuned via the regularization pa-

rameter of L1-NNLS solver, which also has the ability to place different weights on errors

in different frequency bands (for HRTF) or at different time instants (for HRIR). Com-

parison between HRIR reconstructed using the proposed algorithm and L1-LS reference

solution shows that the former has much better sparsity-to-error tradeoff, thus allowing

for high-fidelity latency-free spatial sound presentation at very low computational cost.
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Chapter 7: Conclusions

This thesis developed several novel solutions for fast spatial audio rendering and person-

alization via numerical and machine learning methods. First, we developed an HRTF

based sound-source localization model using two receivers. Binaural input features con-

sisting of ratios between same-direction left and right ear HRTFs were extracted; GP-SSL

models, trained on known binaural inputs, were used to predict sound-source directions.

Next, we introduced an active-learning problem for inferring HRTFs in listening tests.

The GP-SSL models were extended for the prediction of SSL errors from the same in-

puts. This was used to solve the query-selection problem for recommending HRTFs to

the listener for localization. Experiments showed that the recommended HRTFs achieved

smaller localization errors by both human and GP-SSL virtual listeners than the initial

non-individualized HRTF guesses.

Next, we developed a novel tensor product formulation for GPR and sparse-GPR

covariance matrices. The formulation exploited the gridded structure between the grid-

ded input domains and enables the efficient factorization of large Gram matrices via the

Kronecker product decomposition. The model was adapted for the fast interpolation of

HRTFs over the joint spherical coordinate and frequency domains. This also solved the

problem of fusing multiple HRTF datasets (same-subject, different labs) and learning a
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series of data transformations which explained the inter-lab dataset variances. Experi-

mental results showed that GP models had lower generalization error than other spherical

interpolation models.

Last, we showed that collections of HRIRs can be decomposed into a long direction-

independent filter and short/sparse direction-dependent filters by constraining a non-negative

matrix factorization algorithm to Toeplitz structured matrices. This reduced the computa-

tional costs of time-domain convolution with arbitrary input sound-sources and proven to

be faster than frequency-domain convolution via FFT. The direction-dependent filters can

be sparsified by solving a penalized NNLS problem; we developed a low-rank updating

NNLS algorithm and parallelized it for multi-core (CPU/GPU) processors.

7.1 Open Problems

7.1.1 Toeplitz Matrix Factorizations for Blind-Dereverberation

Single-source blind-dereverberation is an important problem for removing the effects of

both long and short time-delayed reflections of an arbitrary input signal x off a com-

plex environment. Under LTI system assumptions, the observed signal x can be ex-

pressed as the convolution between the environment’s transfer function (filter f ) and a

“clean” source-signal (filter g). The effects of reverberation in the environment often re-

duces the intelligibility of x; recovering g is the frequency domain is easy if f is already

known/measured.

However in the case where both f and g are unknown, the problem is underdeter-

mined due to the large number of unknowns (filter weights of f and g); prior assumptions

185



about the distribution of f and g must be added as constraints. Consider the time-domain

convolution x = f ∗ g, formalized in terms of a double Toeplitz matrix factorization by

concatenating windowed segments of x (length N ). This matrix system is given by

X ≈ FG, X = [x1:K , x2:(K+1), . . . , x(N−K+1):N ], (7.1)

where F and G are Toeplitz structured matrices with first row and columns defined by

respective zero-padded filters f and g (lengths K and N −K + 1). Solving for F |G or

G|F could follow Eqs. 6.10, 6.11 presented in chapter 6. However, neither f or g are

constrained to be non-negative and so the locally converged solution will lack interpreta-

tion; the “correctness” of the solutions will be difficult to evaluate as the minimizers of

the least squares reconstruction error in Eq. 6.3 are not indicative of a probable f and an

intelligible g.

The open problem concerns how to encode prior knowledge on parameters f , g

without rendering the filter learning algorithm intractable. The Toeplitz matrix formu-

lation in Eq. 7.1 may be useful with regards to structuring the learning algorithm if

variants of expectation-maximization [51] are used. Establishing the priors on f and g

is more difficult so we suggest several approaches. Priors on f may be probabilistically

modeled from existing reverb filters collected from common-place room and outdoor en-

vironments. Priors on g are more varied as intelligibility measures are domain specific

(e.g. speech, music instrument, animals); incorporating expert-domain knowledge is ex-

pensive so we suggest learning generative models such as deep restricted Boltzmann ma-

chines [140] on available datasets. Low-entropy assumptions such as a sparse g are also
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valid constraints to consider.

7.1.2 Alternative Covariance Functions for Gaussian Processes

The design of the GP covariance function represents the prior domain assumptions regard-

ing how similarities in the observations are explained by similarities in inputs. For GP

HRTF interpolation models (chapter 3, it is possible to improve the data LMH (goodness-

of-fit) by considering covariance functions that may violate the gridded and separable

assumptions between spherical coordinate and frequency input domains. The resulting

Gram matrix K may not have a Kronecker product decomposition and would require

fast approximation methods such as Conjugate gradient [141] and Nyström approxima-

tion [77] to solve the linear system of equations in Eq. 3.5 in a tractable manner. Several

possibilities are given: Covariance functions for the spatial domain may benefit from

non-stationarity [142] as the smoothness of HRTFs may vary along directions that are

shadowed by the head. Non-stationarity in the frequency domain may represent changing

smoothness due to sound reflections that would only occur within restricted frequency

ranges correlated with the sizes of anthropometry features.

For HRTF based GP-SSL models from chapter 2, the product of independent Matérn

class covariance functions over frequency bins in Eq. 2.7 can be formulated as a single

covariance function with a diagonal-covariance matrix that represents the bandwidth hy-

perparameters. This can be generalized by a full-covariance term which would account

for cross-covariances between frequencies and increase the expressibility of the models.
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For example, the modified squared exponential kernels can be expressed by

K(xi, xj) = e−(xi−xj)TA−1(xi−xj), A−1 = LDLT , (7.2)

where A−1 is expressed in the form of a Cholesky decomposition (product of a lower

triangular matrix L, a diagonal matrix D, and the transpose LT ); matrix entries in the

decomposition are treated as the hyperparameters to be optimized under the data LMH

criterion via Eq. 2.8. The training time is expected to increase due to the larger number

of hyperparameters.

7.1.3 Perceptual Measures of HRTF Similarity

While spectral distances such as SD (Eq. 6.17 and the Itakura-Saito distance [143] are

typically used in speech intelligibility tests, they may not be suited for all domains in the

field of acoustics. A trivial example evaluates the distance between two pure tones where

their SD would be independent of how far they are separated in frequency. One alterna-

tive measure is the earth mover’s distance (EMD) [144] which measures the dissimilarity

between two probability distributions in terms of the minimum work for moving masses

over a distance so that the distributions match. EMD distances have been used to com-

pare histograms of color statistics (profiles) for image retrieval; the analogous histogram

concept for acoustic waveforms is its magnitude frequencies (spectral energy) which can

be normalized to sum to unity. Moreover, the EMD distance between non-negative D

dimensional unit vectors can be efficiently computed via the sum of absolute differences
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between their cumulative distribution functions given by

EMD(x, y) =
D∑
i=1

|x̄i − ȳi| , x̄i =
i∑

j=1

xj. (7.3)

This may be useful for magnitude spectra such as HRTFs which can be characterized

by frequency-dependent extrema values (peaks and notches) and correlated with physical

anthropometry features.

Another problem concerns the methodology for comparing two HRTFs. Perceptual

evaluations of HRTFs are naturally subjective as they relate to a measurement direction

to the subject’s response within his/her ear canal. While we have shown that HRTFs can

be localized via listening tests by both humans and GP-SSL models (chapter 2), their

localization directions are unique due filtering w.r.t. to his/her own set of HRTFs. It

may be of future interests to perform studies (collect statistics) on how other individual’s

HRTFs are mismatched in their reported directions by the human population or via the

GP-SSL models. Thus, future perceptual distances between HRTFs can be conceived by

either their physical localization distances in the former or statistical distances between

probability distributions in the latter.
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